Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (3) : 402-408    https://doi.org/10.1007/s11783-010-0223-0
RESEARCH ARTICLE
Carbon dioxide fixation by Chlorella sp. USTB-01 with a fermentor-helical combined photobioreactor
Xuan JIA, Hai YAN(), Zijing WANG, Huanju HE, Qianqian XU, Haiou WANG, Chunhua YIN, Liqin LIU
Department of Biological Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
 Download: PDF(230 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A promising microalgal strain isolated from fresh water, which can grow both autotrophically on inorganic carbon under lighting and heterotrophically on organic carbon without lighting, was identified as Chlorella sp. USTB-01 with the phylogenetic analysis based on 18S ribosomal ribonucleic acid (rRNA) gene sequences. In the heterotrophic batch culture, more than 20.0 g·L-1 of cell dry weight concentration (DWC) of Chlorella sp. USTB-01 was obtained at day 5, and which was used directly to seed the autotrophic culture. A novel fermentor-helical combined photobioreactor was established and used to cultivate Chlorella sp. USTB-01 for the fixation of carbon dioxide (CO2). It showed that the autotrophic growth of Chlorella sp. USTB-01 in the combined photobioreactor was more effective than that in the fermentor alone and the maximum DWC of 2.5 g·L-1 was obtained at day 6. The highest CO2 fixation of 95% appeared on day 1 in the exponential growth phases of Chlorella sp. USTB-01 and 49.8% protein was found in the harvested microalgal cells.

Keywords Chlorella sp. USTB-01      carbon dioxide fixation      combined photobioreactor     
Corresponding Author(s): YAN Hai,Email:haiyan@ustb.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Huanju HE,Qianqian XU,Haiou WANG, et al. Carbon dioxide fixation by Chlorella sp. USTB-01 with a fermentor-helical combined photobioreactor[J]. Front Envir Sci Eng Chin, 2011, 5(3): 402-408.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0223-0
https://academic.hep.com.cn/fese/EN/Y2011/V5/I3/402
Fig.1  Photograph and diagram of the fermentor-helical combined photobioreactor
Fig.2  Linear relationships of the cell concentration and DWC of sp. USTB-01 with OD
Fig.3  Phylogenetic tree of sp. USTB-01 based on 18S rRNA gene sequences
Fig.4  Growth curves of sp. USTB-01 at different initial glucose concentrations
Fig.5  Growth curves of sp. USTB-01 in the fermentor alone and the combined photobioreactor
Fig.6  CO fixation in the fermentor alone and in the combined photobioreactor
1 Kaya Y. The role of CO2 removal and disposal. Energy Conversion and Management , 1995, 36(6-9): 375–380
doi: 10.1016/0196-8904(95)00025-9
2 Otsuki T. A study for the biological CO2 fixation and utilization system.The Science of the Total Environment , 2001, 277(1-3): 21–25
doi: 10.1016/S0048-9697(01)00831-2 pmid:11589401
3 Hsueh H T, Li W J, Chen H H, Chu H. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. Journal of Photochemistry and Photobiology. B, Biology , 2009, 95(1): 33–39
doi: 10.1016/j.jphotobiol.2008.11.010 pmid:19167907
4 Hua R C. Unicellular Algal Culture and Utilization. Beijing: China Agriculture Press, 1986, 278–279 (in Chinese)
5 Yanagi M, Watanabe Y,Saiki H. CO2 fixation by Chlorella sp. HA-l and its utilization. Energy Conversion and Management , 1995, 36(6-9): 713–716
doi: 10.1016/0196-8904(95)00104-L
6 Chiu S Y, Kao C Y, Chen C H, Kuan T C, Ong S C, Lin C S. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology , 2008, 99(9): 3389–3396
doi: 10.1016/j.biortech.2007.08.013 pmid:17904359
7 Xu H, Miao X L, Wu Q Y. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology , 2006, 126(4): 499–507
doi: 10.1016/j.jbiotec.2006.05.002 pmid:16772097
8 Chen F. High cell density culture of microalgae in heterotrophic growth. Trends in Biotechnology , 1996, 14(11): 421–426
doi: 10.1016/0167-7799(96) pmid:10060-3
9 Yan H, Zhou J, He H, Wei Y. Isolation and heterotrophic culture of Chlorella sp. Journal of University of Science and Technology Beijing , 2005, 27(4): 408–412 (in Chinese)
10 Marquez F J, Sasaki K, Kakizono T, Nishio N, Nagai S. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering, 1993, 76(5): 408–410
doi: 10.1016/0922-338X(93) 90034-6
11 Molina Grima E, Acién Fernández F G, García Camacho F, Yusuf Chisti. Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology , 1999, 70(1-3): 231–247
doi: 10.1016/S0168-1656(99) 00078-4
12 Borowitzka M. Commercial production of microalgal: ponds, tanks, tubes and fermenters. Journal of Biotechnology , 1999, 70(1-3): 313–321
doi: 10.1016/S0168-1656(99)00083-8
13 Ugwu C U, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresource Technology , 2008, 99(10): 4021–4028
doi: 10.1016/j.biortech.2007.01.046 pmid:17379512
14 Liu J N, Hu P, Yao L, Wang X Q. Advance of photobioreactor on microalgal cultivation. Food Science , 2006, 27(12): 772–777 (in Chinese)
15 Chen F, Johns M R. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochemistry , 1996, 31(6): 601–604
doi: 10.1016/S0032-9592(96)00006-4
16 Grobbelaar J. Quality control and assurance: crucial for the sustainability of the applied phycology industry. Journal of Applied Phycology , 2003, 15(2/3): 209–215
doi: 10.1023/A:1023820711706
17 de Morais M G, Costa J A V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology , 2007, 129(3): 439–445
doi: 10.1016/j.jbiotec.2007.01.009 pmid:17320994
18 Florian L, Clemens P. Closed photo-bioreactors as tools for biofuel production. Current Opinion in Biotechnology , 2009, 20: 280–285
doi: 10.1016/j.copbio.2009.04.004 pmid:19394811
19 Sierra E, Acíen F G, Ferńandez J M, Gar??a J L, Gon?alez C, Molina E. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal , 2008, 138(1-3): 136–147
doi: 10.1016/j.cej.2007.06.004
20 Fan L H, Zhang Y T, Zhang L, Chen H L. Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. Journal of Membrane Science , 2008, 325(1): 336–345
doi: 10.1016/j.memsci.2008.07.044
21 Jing J K, Xu Q Q, Liu S, Chen H, Yan H. Heterotrophic mass culture of Chlorella USTB-01 in fermentor. Modern Chemical Industry , 2008, 28(12): 67–70 (in Chinese)
22 Wang Z J, Jing J K, Xu Q Q, Yang S, Yan H. Effects of different temperature and pH on the growth and quality of Chlorella USTB-01. Modern Chemical Industry , 2009, 29: 210–213 (in Chinese)
23 Rotureau B, Gego A, Carme B. Trypanosomatid protozoa: a simplified DNA isolation procedure. Experimental Parasitology, 2005, 111(3): 207–209
24 Oh H T, Miyachi S. Chlorella.In: Microalgae Biotechnology. London: Cambridge University Press, 1998, 13
25 AOAC. Official methods of analysis. In: Association of Official Analytical Chemists. Arlington , 1995
26 Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology , 1959, 37(8): 911–917
pmid:13671378
27 Wu Q Y, Yin S, Sheng G Y, Fu J M. New discoveries in study on hydrocarbons from thermal degradation of heterotrophically yellowing algae. Science in China (Series B) , 1994, 37(3): 326–335
28 Widjaja A, Chien C C, Ju Y H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers , 2009, 40(1): 13–20
doi: 10.1016/j.jtice.2008.07.007
29 Yang S, Xu Q Q, Wang Z J, Yang X J, Yan H. Effects of paclobutrazol on the growth and protein content of Chlorella sp. USTB-01 in heterotrophic culture. Modern Chemical Industry , 2009, 29: 160–162 (in Chinese)
30 Sun N, Wang Y, Li Y T, Huang J C, Chen F. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry, 2008, 43: 1288–1292
doi: 10.1016/j.procbio.2008.07.014
31 Ogawa T, Aiba S. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnology and Bioengineering , 1981, 23(5): 1121–1132
doi: 10.1002/bit.260230519
32 Lin L. Mixotrophic growth of Chlorella sp.. In: Asian-Pacific Meet. Japan: Phycology, 2001
33 Shi X M, Liu H J, Zhang X W, Chen F. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemistry , 1999, 34(4): 341–347
doi: 10.1016/S0032-9592(98)00101-0
34 Watanabe Y, Saiki H. Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas. Energy Conversion , 1997, 38: S499-S503
doi: 10.1016/S0196-8904(96)00317-2
35 Fulke A B, Mudliar S N, Yadav R, Shekh A, Srinivasan N, Ramanan R, Krishnamurthi K, Devi S S, Chakrabarti T. Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresource Technology , 2010, 101(21): 8473–8476
doi: 10.1016/j.biortech.2010.06.012 pmid:20580227
36 Soletto D, Binaghi L, Ferrari L, Lodi A, Carvalho J C M, Zilli M, Converti A. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochemical Engineering Journal , 2008, 39(2): 369–375
doi: 10.1016/j.bej.2007.10.007
37 Yan H, Zhang B, Wang S Q, Li Y W, Liu S, Yang S. Advances in the heterotrophic culture of Chlorella sp. Modern Chemical Industry , 2007, 27(4): 18–21 (in Chinese)
38 Liu S, Xu Q Q, Zhang B, Jing J K, Yan H. Extraction and purification of lutein from Chlorella USTB-01. Modern Chemical Industry , 2007, 27: 392–396 (in Chinese)
39 Xu Q Q, Jing J K, Liu S, Zhang B, Yan H. Study on the Production of Eicosapentaenoicacid from Chlorella USTB-01. Modern Chemical Industry , 2008, 25(8): 34–37 (in Chinese)
40 Li Y Q, Horsman M, Wang B, Wu N, Lan C Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology , 2008, 81(4): 629–636
doi: 10.1007/s00253-008-1681-1 pmid:18795284
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed