Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (3) : 311-320    https://doi.org/10.1007/s11783-010-0237-7
Research articles
Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites
Huilong WANG,Shuqin LIU,Hui WANG,Wenfeng JIANG,
Department of Chemistry, Dalian University of Technology, Dalian 116023, China;
 Download: PDF(502 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Multi-walled carbon nanotubes (MWCNTs)/TiO2 composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO2, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO2 composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO2 for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.
Keywords sol-gel      multi-walled carbon nanotubes (MWCNTs)/TiO2 composite      photocatalysis      azo dye      solar irradiation      
Issue Date: 05 September 2010
 Cite this article:   
Hui WANG,Huilong WANG,Shuqin LIU, et al. Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0237-7
https://academic.hep.com.cn/fese/EN/Y2010/V4/I3/311
Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2000, 1(1): 1–21

doi: 10.1016/S1389-5567(00)00002-2
Wang Z Y, Huang B B, Dai Y, Qin X Y, Zhang X Y, Wang P, Liu H X, Yu J X. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method. Journal of Physical Chemistry C, 2009, 113(11): 4612–4617

doi: 10.1021/jp8107683
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271

doi: 10.1126/science.1061051
Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. Journal of the American Chemical Society, 2004, 126(15): 4782–4783

doi: 10.1021/ja0396753
Umebayashi T, Yamaki T, Tanaka S, Asai K. Visible light-induced degradation of methylene blue on S-doped TiO2. Chemistry Letters, 2003, 32(4): 330–331

doi: 10.1246/cl.2003.330
Zhou M H, Yu J G. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. Journal of Hazardous Materials, 2008, 152(3): 1229–1236

doi: 10.1016/j.jhazmat.2007.07.113
Yu J C, Yu J, Ho W, Jiang Z, Zhang L. Effects of F? doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 Powders. Chemistry of Materials, 2002, 14(9): 3808–3816

doi: 10.1021/cm020027c
Wei F Y, Ni L S, Cui P. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. Journal of Hazardous Materials, 2008, 156(1―3): 135–140
Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters, 2003, 32(8): 772–773

doi: 10.1246/cl.2003.772
Xu C, Killmeyer R, Gray M L, Khan S U M. Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination. Applied Catalysis B: Environmental, 2006, 64(3―4): 312–317
Colón G, Hidalgo M C, Macías M, Navío J A, Do?a J M. Influence of residual carbon on the photocatalytic activity of TiO2/C samples for phenol oxidation. Applied Catalysis B: Environmental, 2003, 43(2): 163–173

doi: 10.1016/S0926-3373(02)00300-4
Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters, 1998, 73(26): 3842–3844

doi: 10.1063/1.122911
Wang H, Wang H L, Jiang W F, Li Z Q. Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Research, 2009, 43(1): 204–210

doi: 10.1016/j.watres.2008.10.003
Maira A J, Coronado J M, Augugliaro V, Yeung K L, Conesa J C, Soria J. Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. Journal of Catalysis, 2001, 202(2): 413–420

doi: 10.1006/jcat.2001.3301
Wawrzyniak B, Morawski A W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen. Applied Catalysis B: Environmental, 2006, 62(1―2): 150–158
Wang W, Serp P, Kalck P, Faria J L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. Journal of Molecular Catalysis A Chemical, 2005, 235(1―2): 194–199
?kte A N, Y lmaz ?. Photodecolorization of methyl orange by yttrium incorporated TiO2 supported ZSM-5. Applied Catalysis B: Environmental, 2008, 85(1―2): 92–102
Shankar M V, Anandan S, Venkatachalam N, Arabindoo B, Murugesan V. Novel thin-film reactor for photocatalytic degradation of pesticides in an aqueous solutions. Journal of Chemical Technology and Biotechnology, 2004, 79(11): 1279–1285

doi: 10.1002/jctb.1124
Sohrabi M R, Ghavami M. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters. Journal of Hazardous Materials, 2008, 153(3): 1235–1239

doi: 10.1016/j.jhazmat.2007.09.114
Chang C N, Ma Y S, Fang G C, Chao A C, Tsai M C, Sung H F. Decolorizing of lignin wastewater using the photochemical UV/TiO2 process. Chemosphere, 2004, 56(10): 1011–1017

doi: 10.1016/j.chemosphere.2004.04.021
Toor A P, Verma A, Jotshi C K, Bajpai P K, Singh V. Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes and Pigments, 2006, 68(1): 53–60

doi: 10.1016/j.dyepig.2004.12.009
Li G, Zhao X S, Ray M B. Advanced oxidation of orange II using TiO2 supported on porous adsorbents: The role of pH, H2O2 and O3. Separation and Purification Technology, 2007, 55(1): 91–97

doi: 10.1016/j.seppur.2006.11.003
Yu J G, Yu H G, Cheng B, Zhao X J, Yu J C, Ho W K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. Journal of Physical Chemistry B, 2003, 107(50): 13871–13879

doi: 10.1021/jp036158y
Byrappa K, Dayananda A S, Sajan C P, Basavalingu B, Shayan M B, Soga K, Yoshimura M. Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. Journal of Materials Science, 2008, 43(7): 2348–2355

doi: 10.1007/s10853-007-1989-8
Thompson T L, Yates J T Jr. Surface science studies of the photoactivation of TiO2—new photochemical processes. Chemical Reviews, 2006, 106(10): 4428–4453

doi: 10.1021/cr050172k
Konstantinou K I, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 2004, 49(1): 1–14

doi: 10.1016/j.apcatb.2003.11.010
[1] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[2] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[3] Xiaoxia Ou, Jianfang Yan, Fengjie Zhang, Chunhua Zhang. Accelerated degradation of orange G over a wide pH range in the presence of FeVO4[J]. Front. Environ. Sci. Eng., 2018, 12(1): 7-.
[4] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[5] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[6] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[7] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[8] Lei LI, Jian XU, Changsheng GUO, Yuan ZHANG. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture[J]. Front Envir Sci Eng, 2013, 7(3): 382-387.
[9] Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN. Improved nitrogen removal in dual-contaminated surface water by photocatalysis[J]. Front Envir Sci Eng, 2012, 6(3): 428-436.
[10] YiangChen CHOU, Young KU. Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor[J]. Front Envir Sci Eng, 2012, 6(2): 149-155.
[11] Xinhua WANG, Jingmei LI, Xiufen LI, Guocheng DU. Influence of aeration intensity on the performance of A/O-type sequencing batch MBR system treating azo dye wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(4): 615-622.
[12] Chao QIN, Shaogui YANG, Cheng SUN, Jia ZHOU, Manjun ZHAN, Rongjun WANG, Huanxing CAI, . Investigation of the effects of humic acid and H 2 O 2 on the photocatalytic degradation of atrazine assisted by microwave[J]. Front.Environ.Sci.Eng., 2010, 4(3): 321-328.
[13] Chunzhi LI , Wenwen WANG , Junying ZHANG , Hailing ZHU , Weiwei ZHANG , Tianmin WANG , . Photocatalytic activity of ZnO films with micro-grid structure[J]. Front.Environ.Sci.Eng., 2009, 3(3): 289-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed