Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (3) : 321-328    https://doi.org/10.1007/s11783-010-0238-6
Research articles
Investigation of the effects of humic acid and H 2 O 2 on the photocatalytic degradation of atrazine assisted by microwave
Chao QIN1,Shaogui YANG1,Cheng SUN1,Jia ZHOU1,Manjun ZHAN2,Rongjun WANG3,Huanxing CAI3,
1.State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China; 2.Nanjing Research Institude of Environmental Protection, Nanjing 210013, China; 3.Changzhou Environmental Monitoring Center, Changzhou 210093, China;
 Download: PDF(293 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s−1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.
Keywords atrazine      retardation effect      photocatalysis      TiO2      
Issue Date: 05 September 2010
 Cite this article:   
Chao QIN,Shaogui YANG,Cheng SUN, et al. Investigation of the effects of humic acid and H 2 O 2 on the photocatalytic degradation of atrazine assisted by microwave[J]. Front.Environ.Sci.Eng., 2010, 4(3): 321-328.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0238-6
https://academic.hep.com.cn/fese/EN/Y2010/V4/I3/321
USEPA. National Pesticide Survey Factsheet, CLARIT 570990―NPS10. United States Environmental Protection Agency: Washington, DC, 1990
Graziano N, McGuire M J, Roberson A, Adams C, Jiang H, Blute N. 2004 National atrazine occurrence monitoringprogram using the abraxis elisa method. Environmental Science & Technology, 2006, 40(4): 1163―1171

doi: 10.1021/es051586y
Cooper R L, Stoker T E, Tyrey L, Goldman J M, McElroy W K. Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicological Sciences, 2000, 53(2): 297―307

doi: 10.1093/toxsci/53.2.297
USEPA. Consumer Factsheet on: ATRAZINE. UnitedStates Environmental Protection Agency: Washington, DC,2005
Banerjee K, Cheremisinoff P N, Cheng S L. Sorption of organic contaminantsby fly ash in a single solute system. EnvironmentalScience & Technology, 1995, 29(9): 2243―2251

doi: 10.1021/es00009a014
Mascolo G, Lopez A, Foldenyi R, Passino R, TiravantiG. Prometryne oxidation by sodium hypochlorite in aqueous solution:kinetics and mechanism. Environmental Science& Technology, 1995, 29(12): 2987―2991

doi: 10.1021/es00012a015
Yang H, Lin W Y, Rajeshwar K. Homogeneous and heterogeneous photocatalyticreactions involving As(III) and As(V) species in aqueous media. Journal of Photochemistry and Photobiology A Chemistry, 1999, 123(1―3): 137―143

doi: 10.1016/S1010-6030(99)00052-0
Moraes J E F, Quina F H, Nascimento C A O, Silva D N, Chiavone-Filho O. Treatmentof saline wastewater contaminated with hydrocarbons by the photo-Fentonprocess. Environmental Science & Technology, 2004, 38(4): 1183―1187

doi: 10.1021/es034217f
Skoumal M, Cabot P L, Centellas F, Arias C, Rodriguez R M, Garrido J A, Brillas E. Mineralizationof paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Applied Catalysis B: Environmental, 2006, 66(3―4): 228―240

doi: 10.1016/j.apcatb.2006.03.016
Zalazar C S, Satuf M L, Alfano O M, Cassano A E. Comparison of H2O2/UVand heterogeneous photocatalytic processes for the degradation ofdichloroacetic acid in water. EnvironmentalScience & Technology, 2008, 42(16): 6198―6204

doi: 10.1021/es800028h
Horikoshi S, Hidaka H, Serpone N. Environmental remediationby an integrated microwave/UV illumination technique: VI. A simplemodified domestic microwave oven integrating an electrodeless UV-Vislamp to photodegrade environmental pollutants in aqueous media. Journal of Photochemistry and Photobiology A Chemistry, 2004, 161(2―3): 221―225
Yang S G, Fu H B, Sun C, Gao Z Q. Rapid photocatalytic destruction of pentachlorophenol in F-Si-comodifiedTiO2 suspensions under microwave irradiation. Journal of Hazardous Materials, 2009, 161(2―3): 1281―1287
Ju Y M, Yang S G, Ding Y C, Sun C, Zhang A Q, Wang L. Microwave-Assisted Rapid Photocatalytic Degradation ofMalachite Green in TiO2 Suspensions: Mechanismand Pathways. Journal of Physical ChemistryA, 2008, 112(44): 11172―11177

doi: 10.1021/jp804439z
Zhanqi G, Shaogui Y, Na T, Cheng S. Microwave assisted rapid and complete degradation ofatrazine using TiO2 nanotube photocatalystsuspensions. Journal of Hazardous Materials, 2007, 145(3): 424―430

doi: 10.1016/j.jhazmat.2006.11.042
Lin C, Lin K S. Photocatalyticoxidation of toxic organohalides with TiO2/UV:the effects of humic substances and organic mixtures. Chemosphere, 2007, 66(10): 1872―1877
Lee H, Choi W. Photocatalyticoxidation of arsenite in TiO2 suspension: kineticsand mechanisms. Environmental Science &Technology, 2002, 36(17): 3872―3878

doi: 10.1021/es0158197
Ta N, Hong J, Liu T, Sun C. Degradationof atrazine by microwave-assisted electrodeless discharge mercurylamp in aqueous solution. Journal of HazardousMaterials, 2006, 138(1): 187―194

doi: 10.1016/j.jhazmat.2006.05.050
Konstantinou I K, Sakellarides T M, Sakkas V A, Albanis T A. Photocatalytic degradation of selected s-triazine herbicidesand organophosphorus insecticides over aqueous TiO2 suspensions. Environmental Science &Technology, 2001, 35(2): 398―405

doi: 10.1021/es001271c
Lackhoff M, Niessner R. Photocatalyticatrazine degradation by synthetic minerals, atmospheric aerosols,and soil particles. Environmental Science& Technology, 2002, 36(24): 5342―5347

doi: 10.1021/es025590a
Cao Y, Yi L, Huang L, Hou Y, Lu Y. Mechanism and pathways ofchlorfenapyr photocatalytic degradation in aqueous suspension of TiO2. Environmental Science &Technology, 2006, 40(10): 3373―3377

doi: 10.1021/es052073u
Garbin J R, Milori D M B P, Sim?es M L, da Silva W T L, Neto L M. Influenceof humic substances on the photolysis of aqueous pesticide residues. Chemosphere, 2007, 66(9): 1692―1698
Chu W, Choy W K. The mechanismsof rate enhancing and quenching of trichloroethene photodecay in thepresence of sensitizer and hydrogen sources. Water Research, 2002, 36(10): 2525―2532

doi: 10.1016/S0043-1354(01)00471-7
Ilisz I, Dombi A. The photochemicalbehavior of hydrogen peroxide in near UV-irradiated aqueous TiO2 suspensions. Journal ofMolecular Catalysis A Chemical, 1998, 135(1): 55―61

doi: 10.1016/S1381-1169(97)00296-3
Dionysiou D D, Suidan M T, Bekou E, Baudin I, Laine J M. Effect ofionic strength and hydrogen peroxide on the photocatalytic degradationof 4-chlorobenzoic acid in water. AppliedCatalysis B: Environmental, 2000, 26(3): 153―171

doi: 10.1016/S0926-3373(00)00124-7
Chemseddine A. A study of the primary step in the photochemical degradationof acetic-acid and chloroacetic acids on a TiO2 photocatalyst. Journal of Molecular Catalysis, 1990, 60(3): 295―311

doi: 10.1016/0304-5102(90)85253-E
Pelizzetti E. Enhancement of the rate of photocatalytic degradationon TiO2 of 2-chlorophenol, 2,7-dichlorodibenzodioxinand atrazine by inorganic oxidizing species. New Journal of Chemistry, 1991, 15(5): 351―359
Granados-Oliveros G, Paez-Mozo E A, Ortega F M, Ferronato C, Chovelon J M. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Applied Catalysis B: Environmental, 2009, 89(3―4): 448―454
Héquet V, Gonzalez C, Le Cloirec P. Photochemical processes foratrazine degradation: methodological approach. Water Research, 2001, 35(18): 4253―4260

doi: 10.1016/S0043-1354(01)00166-X
Pelizzetti E, Maurino V, Minero C, Carlin V, Tosato M L, Pramauro E, Zerbinati O. Photocatalytic degradation of atrazine and other striazineherbicides. Environmental Science &Technology, 1990, 24(10): 1559―1565
Canelli E. Chemical, bacteriological, and toxicological propertiesof cyanuric acid and chlorinated isocyanurates as applied to swimmingpool disinfection: a review. American Journalof Public Health, 1974, 64(2): 155―162

doi: 10.2105/AJPH.64.2.155
Hiskia A, Ecke M, Troupis A, Kokorakis A, Hennig H, Papaconstantinou E. Sonolytic, photolytic, and photocatalyticdecomposition of atrazine in the presence of polyoxometalates. Environmental Science & Technology, 2001, 35(11): 2358―2364

doi: 10.1021/es000212w
[1] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[2] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[3] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[4] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[5] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[6] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[7] Lei LI, Jian XU, Changsheng GUO, Yuan ZHANG. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture[J]. Front Envir Sci Eng, 2013, 7(3): 382-387.
[8] Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN. Improved nitrogen removal in dual-contaminated surface water by photocatalysis[J]. Front Envir Sci Eng, 2012, 6(3): 428-436.
[9] YiangChen CHOU, Young KU. Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor[J]. Front Envir Sci Eng, 2012, 6(2): 149-155.
[10] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
[11] Xiaoxia OU, Chong WANG, Fengjie ZHANG, Yan MA, He LIU, Xie QUAN, . Complexation of iron by salicylic acid and its effect on atrazine photodegradation in aqueous solution[J]. Front.Environ.Sci.Eng., 2010, 4(2): 157-163.
[12] Changyong WU, Xiaoling LI, Zhiqiang CHEN, Yongzhen PENG, . Effect of short-term atrazine addition on the performance of an anaerobic/anoxic/oxic process[J]. Front.Environ.Sci.Eng., 2010, 4(2): 150-156.
[13] Chunzhi LI , Wenwen WANG , Junying ZHANG , Hailing ZHU , Weiwei ZHANG , Tianmin WANG , . Photocatalytic activity of ZnO films with micro-grid structure[J]. Front.Environ.Sci.Eng., 2009, 3(3): 289-293.
[14] LIU Chun, HUANG Xia. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism[J]. Front.Environ.Sci.Eng., 2008, 2(4): 452-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed