Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2010, Vol. 4 Issue (4) : 482-489    https://doi.org/10.1007/s11783-010-0245-7
RESEARCH ARTICLE
Release of elements from municipal solid waste incineration fly ash
Wei WANG, Lei ZHENG(), Feng WANG, Xiao WAN, Keqing YIN, Xingbao GAO
Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(396 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The element-release behavior of municipal solid waste incineration fly ash was explored through leaching test with continuous set-point pH (pHstat test) and serial single reaction cell (SSRC) tests. First, the relationship between element release and acid neutralizing capacity (ANC) consumption was examined with a pHstat test. Four types of release behaviors were identified which are characteristic for different elements: (1) release curves that were almost linear with ANC consumption (Ca, Zn, and Cd); (2) release that was significantly faster than ANC (Na, K, and Cl); (3) curves that featured a strong increase with ANC consumption, after a transient release, followed by an almost equal decrease (Si and S); and (4) release that is strongly retarded compared with ANC consumption (Cr, Cu, and Pb). In the SSRC system, it the existence of a pH front and a wash-out phenomenon is demonstrated. Combining the results from the SSRC test with the kinetic analysis of the ANC system in the pHstat test, it was inferred that less than one-third of the ANC measured from a batch pH titration plays a neutralization role in a field situation. The methodologies described may provide a powerful set of tools for systematic evaluation of element release from solid wastes.

Keywords pHstat test      Serial single reaction cell test (SSRC)      leaching      heavy metal     
Corresponding Author(s): ZHENG Lei,Email:zhenl@mails.tsinghua.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Wei WANG,Lei ZHENG,Feng WANG, et al. Release of elements from municipal solid waste incineration fly ash[J]. Front Envir Sci Eng Chin, 2010, 4(4): 482-489.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0245-7
https://academic.hep.com.cn/fese/EN/Y2010/V4/I4/482
Fig.1  

Results of pHstat tests at different pH levels. (a) measured ANC curves and fitted curves for four pH levels; (b-f) cumulative concentrations of elements evolved with ANC release

Fig.2  

pH values and elements concentration changes in the SSRC system at different L/S ratios. For element variety (except for Na, K, and Cl), both (a) concentration in residue and (b) concentration in solution (releases at L/S= 6.5 are read on the top horizontal axis; releases at L/S= 10 are read on the bottom horizontal axis) along the flow path are shown

Fig.3  

XRD analyses of fly ash samples under the L/S of 10 compared with the original fly ash sample. (a, SiO2; b, CaSO4; c, KCl; d, (K, Na)3Na(SO4)2; e, NaCl; f, Ca3SiO5; g, Na6Fe(SO4)4)

Tab.1  

Chemical composition of MSWI fly ash and the total release ratio of components during pHstat tests at different pH values

null

Note: a) The variation intervals for the fitted parameters with 95% confidence are also shown.

Tab.2  

Calculated buffer capacities and rate coefficients

1 Wan X, Wang W, Ye T M, Guo Y W, Gao X B. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure. Journal of Hazardous Materials , 2006, 134(1-3): 197–201
2 Yan J Y, Moreno L, Neretnieks I. The long-term acid neutralizing capacity of steel slag. Waste Management (New York, N.Y.) , 2000, 20(2-3): 217–223
3 Lo H M, Liao Y L. The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites. Journal of Hazardous Materials , 2007, 142(1-2): 512–519
4 Dijkstra J J, Meeussen J C L, Comans R N J. Leaching of heavy metals from contaminated soils: an experimental and modeling study. Environmental Science & Technology , 2004, 38(16): 4390–4395
doi: 10.1021/es049885v
5 Dijkstra J J, van der Sloot H A, Comans R N J. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry , 2006, 21(2): 335–351
doi: 10.1016/j.apgeochem.2005.11.003
6 Cappuyns V, Swennen R, Verhulst J. Assessment of acid neutralizing capacity and potential mobilisation of trace metals from land-disposed dredged sediments. Science of the Total Environment , 2004, 333(1-3): 233–247
7 Li Y D, Richardson J B, Mark Bricka R, Niu X J, Yang H B, Li L, Jimenez A. Leaching of heavy metals from E-waste in simulated landfill columns. Waste Management (New York, N.Y.) , 2009, 29(7): 2147–2150
doi: 10.1016/j.wasman.2009.02.005
8 Bednar A J, Boyd R E, Jones W T, McGrath C J, Johnson D R, Chappell M A, Ringelberg D B. Investigations of tungsten mobility in soil using column tests. Chemosphere, 75 2009, 75: 1049–1056
9 Mester Z, Angelone M, Brunori C, Cremisini C, Muntau H, Morabito R. Digestion methods for analysis of fly ash samples by atomic absorption spectrometry. Analytical Chemical Acta , 1999, 395(1-2): 157–163
10 Schwarz A, Wilcke W, Styk J, Zech W. Heavy metal release from soils in batch pHstat experiments. Soil Science Society of America Journal , 1999, 63: 290 - 296
doi: 10.2136/sssaj1999.03615995006300020006x
11 Harris W R, Silberman D. Time-dependent leaching of coal fly ash by chelating agents. Environmental Science & Technology , 1983, 17(3): 139–145
doi: 10.1021/es00109a004
12 Fruchter J S, Ral D, Zachara J M. Identification of solubility-controlling solid phases in a large fly ash field lysimeter. Environmental Science & Technology , 1990, 24(8): 1173–1179
doi: 10.1021/es00078a004
13 Zhang F S, Itoh H. Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. Journal of Hazardous Materials , 2006, 136(3): 663–670
doi: 10.1016/j.jhazmat.2005.12.052
14 Eighmy T T, Eusden J D Jr, Krzanowski J E, Domingo D S, St?mpfli D, Martin J R, Erickson P M. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environmental Science & Technology , 1995, 29(3): 629–646
doi: 10.1021/es00003a010
15 Gilardoni S, Fermo P, Cariati F, Gianelle V, Pitea D, Collina E, Lasagni M. MSWI fly ash particle analysis by scanning electron microscopy-energy dispersive X-ray spectroscopy. Environmental Science & Technology , 2004, 38(24): 6669–6675
doi: 10.1021/es0494961
16 Karlfeldt K, Steenari B M. Assessment of metal mobility in MSW incineration ashes using water as the reagent. Fuel , 2007, 86(12-13): 1983–1993
17 Piantone P, Bodénan F, Chatelet-Snidaro L. Mineralogical study of secondary mineral phases from weathered MSWI bottom ash: Implications for the modeling and trapping of heavy metals. Applied Geochemistry , 2004, 19(12): 1891–1904
18 Van der Bruggen B, Vogels G, Van Herck P, Vandecasteele C. Simulation of acid washing of municipal solid waste incineration fly ashes in order to remove heavy metals. Journal of Hazardous Materials , 1998, 57(1-3): 127–144
19 Halim C E, Short S A, Scott J A, Amal R, Low G. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC. Journal of Hazardous Materials , 2005, 125(1-3): 45–61
20 Ugurlu A. Leaching characteristics of fly ash. Envirnmental Geology , 2004, 46: 890–895
doi: 10.1007/s00254-004-1100-6
21 Yan J Y, Moreno L, Neretnieks I. The neutralization behavior of MSWI bottom ash on different time scales and in different reaction systems. Waste Management (New York) , 1999, 19(5): 339–347
22 Halim C E, Scott J A, Natawardaya H, Amal R, Beydoun D, Low G. Comparison between acetic acid and landfill leachates for the leaching of Pb(II), Cd(II), As(V), and Cr(VI) from cementitious wastes. Environmental Science & Technology , 2004, 38(14): 3977–3983
doi: 10.1021/es0350740
23 Zhang F S, Itoh H. Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere , 2005, 60(3): 319–325
doi: 10.1016/j.chemosphere.2004.12.019
24 Humez N, Humez A L, Juste C, Prost R. A new assessment of mobility of elements in sediments and wastes. Chemical Speciation and Bioavailability , 1997, 9: 57–65
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[4] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[5] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[6] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[7] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[8] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[9] Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang. Magnetotactic bacteria: Characteristics and environmental applications[J]. Front. Environ. Sci. Eng., 2020, 14(4): 56-.
[10] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[11] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[12] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[13] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[14] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[15] Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal[J]. Front. Environ. Sci. Eng., 2019, 13(4): 49-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed