Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (1) : 57-64    https://doi.org/10.1007/s11783-010-0251-9
RESEARCH ARTICLE
Kinetics of microwave-enhanced oxidation of phenol by hydrogen peroxide
Deming ZHAO1,2, Jie CHENG2, Michael R. HOFFMANN2()
1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, China; 2. W. M. Keck Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
 Download: PDF(374 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aqueous solutions of phenol were oxidized by hydrogen peroxide assisted by microwave (MW) irradiation. A simple kinetic model for the overall degradation of phenol in the presence of excess H2O2 is proposed in which the degradation rate of phenol is expressed as a linear function of the concentrations of phenol and H2O2. A detailed parametric study showed that the degradation rate of phenol increased with increasing [H2O2] until saturation was observed. Phenol degradation followed apparent zero-order kinetics under MW radiation or H2O2 oxidation. However, after 90 min of irradiation, the observed kinetics shifted to pseudo first order. The overall reaction rates were significantly enhanced in the combined MW/H2O2 system, mainly because microwave could accelerate H2O2 to generate hydroxyl radical (·OH) and other reactive oxygen intermediates. The observed synergetic effects of the MW/H2O2 process resulted in an increased in the net reaction rate by a factor of 5.75. When hydrogen peroxide is present in a large stoichiometric excess, the time required to achieve complete mineralization is reduced significantly.

Keywords microwave (MW) irradiation      hydrogen peroxide      phenol      synergetic effects      kinetic model     
Corresponding Author(s): HOFFMANN Michael R.,Email:mrh@caltech.edu   
Issue Date: 05 March 2011
 Cite this article:   
Deming ZHAO,Jie CHENG,Michael R. HOFFMANN. Kinetics of microwave-enhanced oxidation of phenol by hydrogen peroxide[J]. Front Envir Sci Eng Chin, 2011, 5(1): 57-64.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0251-9
https://academic.hep.com.cn/fese/EN/Y2011/V5/I1/57
Fig.1  A schematic diagram of basic experimental setup. 1) Microwave oven; 2) HO addition port; 3) reactor; 4) temperature control bath; 5) sample outlet; 6) circulation pump
Fig.2  
Fig.3  Pseudo-first-order rate constants and pseudo-zero-order constants vs pH during MW/HO oxidation at 30°C, = 1.0 L, [CHOH] = 1.1mmol·L, and [HO] = 8.8 mmol·L
Fig.4  Pseudo-first-order rate constants and pseudo-zero-order constants vs [CHOH] during the combined MW/HO oxidation at 30°C, = 1.0 L, and [HO] = 8.8 mmol·L
Fig.5  Pseudo-first-order rate constants and pseudo-zero-order constants versus [HO] during MW/HO oxidation, at 30°C, = 1.0 L, [CHOH] = 1.1 mmol·L
Fig.6  First-order plots of ln([CHOH]/[ CHOH]) versus time over first 90 min of reaction time, and (a) the pseudo-first kinetics rate constants at different initial pH values of 3(□), 5(○), 7(?), 9(?), and 11() at 30°C, = 1.0 L, [CHOH] = 1.1 mmol·L, and [HO] = 8.8 mmol·L; (b) initial hydrogen peroxide [HO] = 1.5 mmol·L (□), 2.9 mmol·L (○), 5.9 mmol·L (?), 8.8 mmol·L (?), 11.8 mmol·L (), 14.7 mmol·L (), and 17.6 mmol·L (◇) at 30°C, = 1.0 L, pH = 5 for [CHOH] = 1.1 mmol·L; (c) the initial phenol concentration of 0.5 mmol·L (□), 1.1 mmol·L (○), 2.1 mmol·L (?), and 4.3 mmol·L (?)at 3 0°C, = 1.0 L, pH = 5 with [HO] = 8.8 mmol·L; and pseudo first-order constants in different initial pH values, initial hydrogen peroxide, and initial phenol concentration, and the special signs above columns in accordance with the annotated signs in figures (a)-(d)
Fig.7  [CHOH]/[CHOH] versus time profiles over the first 90 min of reaction MW alone (□), for HO alone (○), and for the combined MW/HO oxidation (?) at 30°C, = 1.0 L, [CHOH] = 1.1 mmol·L, and [HO] = 8.8 mmol·L
Fig.8  [CHOH]/[CHOH] versus time data profiles compared to kinetic model results for the MW/HO oxidation system at 30°C, = 1.0 L, [CHOH] = 1.1 mmol·L, pH = 5, and [HO] = 8.8 mmol·L (□) and for the same conditions with [CHOH] = 0.5 mmol·L (○)
1 Wu Z L, Ondruschka B, Cravotto G. Degradation of phenol under combined irradiation of microwaves and ultrasound. Environmental Science & Technology , 2008, 42(21): 8083–8087
doi: 10.1021/es8013375
2 St?ffler B, Luft G. Oxidative degradation of p-toluenesulfonic acid using hydrogen peroxide. Chemosphere , 1999, 38(5): 1035–1047
doi: 10.1016/S0045-6535(98)00357-9
3 Zazo J A, Casas J A, Molina C B, Quintanilla A, Rodriguez J J. Evolution of ecotoxicity upon Fenton’s oxidation of phenol in water. Environmental Science & Technology , 2007, 41(20): 7164–7170
doi: 10.1021/es071063l
4 Zazo J A, Casas J A, Mohedano A F, Gilarranz M A, Rodríguez J J. Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environmental Science & Technology , 2005, 39(23): 9295–9302
doi: 10.1021/es050452h
5 Zhao D M, Shi H X, Lei L C, Wang D H. Degradation of phenol in aqueous solution by US/H2O2 combination process. Zhejiang Daxue Xuebao, Gongxueban , 2004, 38(2): 240–243 (in Chinese)
6 Han D H, Cha S Y, Yang H Y. Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Research , 2004, 38(11): 2782–2790
doi: 10.1016/j.watres.2004.03.025
7 Edalatmanesh M, Dhib R, Mehrvar M. Kinetic modeling of aqueous phenol degradation by UV/H2O2 process. International Journal of Chemical Kinetics , 2008, 40(1): 34–43
doi: 10.1002/kin.20286
8 Rosenfeldt E J, Linden K G, Canonica S, von Gunten U. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Research , 2006, 40(20): 3695–3704
doi: 10.1016/j.watres.2006.09.008
9 Gogate P R, Pandit A B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Advances in Environmental Research , 2004, 8(3-4): 501–551
doi: 10.1016/S1093-0191(03)00032-7
10 Glaze W H, Kang J W, Chapin D H. The chemistry of water treatment processes involving ozone. Ozone Science and Engineering , 1987, 9(4): 335–352
11 Lesko T, Colussi A J, Hoffmann M R. Sonochemical decomposition of phenol: evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology , 2006, 40(21): 6818–6823
doi: 10.1021/es052558i
12 Weavers L K, Malmstadt N, Hoffmann M R. Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation. Environmental Science & Technology , 2000, 34(7): 1280–1285
doi: 10.1021/es980795y
13 Destaillats H, Hung H M, Hoffmann M R. Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation. Environmental Science & Technology , 2000, 34(2): 311–317
doi: 10.1021/es990384x
14 Weavers L K, Ling F H, Hoffmann M R. Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environmental Science & Technology , 1998, 32(18): 2727–2733
doi: 10.1021/es970675a
15 Mills G, Hoffmann M R. Photocatalytic degradation of pentachlorophenol on titanium dioxide particles- identification of intermediates and mechanism of reaction. Environmental Science & Technology , 1993, 27(8): 1681–1689
16 Willberg D M, Lang P S, H?chemer R H, Kratel A, Hoffmann M R. Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor. Environmental Science & Technology , 1996, 30(8): 2526–2534
doi: 10.1021/es950850s
17 Wu Z C, Zhou M H. Partial degradation of phenol by advanced electrochemical oxidation process. Environmental Science & Technology , 2001, 35(13): 2698–2703
doi: 10.1021/es001652q
18 Jung K S, Kwon J H, Son S M, Shin J S, Lee G D, Park S S. Characteristics of the copper phthalocyanines synthesized at various conditions under the classical and microwave processes. Synthetic Metals , 2004, 141(3): 259–264
doi: 10.1016/S0379-6779(03)00414-4
19 Abramovitch R A, Zhou H B, Davis M, Peters L. Decomposition of PCB's and other polychlorinated aromatics in soil using microwave energy. Chemosphere , 1998, 37(8): 1427–1436
doi: 10.1016/S0045-6535(98)00133-7
20 Caddick S. Microwave assisted organic reactions. Tetrahedron , 1995, 51(38): 10403–10432
doi: 10.1016/0040-4020(95)00662-R
21 Tai H S, Jou C J G. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere , 1999, 38(11): 2667–2680
doi: 10.1016/S0045-6535(98)00432-9
22 Lai T L, Lee C C, Wu K S, Shu Y Y, Wang C B. Microwave-enhanced catalytic degradation of phenol over nickel oxide. Applied Catalysis B: Environmental , 2006, 68(3-4): 147–153
23 Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV-illumination method. 1. Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions. Environmental Science & Technology , 2002, 36(6): 1357–1366
doi: 10.1021/es010941r
24 Horikoshi S, Hidaka H, Serpone N. Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chemical Physics Letters , 2003, 376(3-4): 475–480
25 Kataoka S, Tompkins D T, Zeltner W A, Anderson M A. Photocatalytic oxidation in the presence of microwave irradiation: observations with ethylene and water. Journal of Photochemistry and Photobiology A Chemistry , 2002, 148(1-3): 323–330
26 Zhao D M, Jin N R, Wu C X. Degradation of phenol aqueous solution using MW/H2O2 system. Huagong Xuebao (Chinese Edition) , 2007, 58(7): 1736–1740 (in Chinese)
27 Zhao D M, Fei K F. Synergetic kinetics of phenol degradation in water by using microwave/H2O2 system. Huagong Xuebao (Chinese Edition) , 2008, 59(1): 101–105 (in Chinese)
28 Bari S S, Bose A K, Chaudhary A G, Manhas M S, Raju V S, Robb E W. Reactions accelerated by microwave radiation in the undergraduate organic laboratory. Journal of Chemical Education , 1992, 69(11): 938–939
doi: 10.1021/ed069p938
29 Pougnet M A B. Modification of a commercial microwave-oven for applications in the chemical laboratory. Review of Scientific Instruments , 1993, 64(2): 529–531
doi: 10.1063/1.1144227
30 Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV-illumination method II: Characteristics of a novel UV-VIS–microwave integrated irradiation device in photodegradation processes. Journal of Photochemistry and Photobiology A Chemistry , 2002, 153(1-3): 185–189
31 Liu X T, Quan X, Bo L L, Chen S, Zhao Y Z. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon , 2004, 42(2): 415–422
doi: 10.1016/j.carbon.2003.12.032
32 Park M, Komarneni S, Roy R. Microwave-hydrothermal decomposition of chlorinated organic compounds. Materials Letters , 2000, 43(5-6): 259–263
33 Shi H X, Zhao D M, Lei L C, Wang D H. Synergetic kinetics of phenol degradation in water using ultrasonic/H2O2 system. Huagong Xuebao (Chinese Edition) , 2003, 54(10): 1436–1441 (in Chinese)
34 De A K, Chaudhuri B, Bhattacharjee S, Dutta B K. Estimation of ·OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2 photo-oxidation. Journal of Hazardous Materials , 1999, 64(1): 91–104
doi: 10.1016/S0304-3894(98)00225-8
35 Sanz J, Lombrana J I, De Luis A M, Ortueta M, Varona F. Microwave and Fenton’s reagent oxidation of wastewater. Environmental Chemistry Letters , 2003, 1(1): 45–50
doi: 10.1007/s10311-002-0007-2
36 Sawyer D T. Oxygen Chemistry: The International Series of Monographs on Chemistry. New York: Oxford University Press, 1991
37 Haag W R, Yao C C D. Rate constants for reaction of hydroxyl radicals with several drinking-water ontaminants. Environmental Science & Technology , 1992, 26(5): 1005–1013
doi: 10.1021/es00029a021
38 Shen Y S, Ku Y, Lee K C. The effect of light absorbance on the decomposition of chlorophenols by ultraviolet radiation and UV/H2O2 processes. Water Research , 1995, 29(3): 907–914
doi: 10.1016/0043-1354(94)00198-G
39 Apak R, Hugül M. Photooxidation of some mono-, di-, and tri-chlorophenols in aqueous solution by hydrogen peroxide/UV combinations. Journal of Chemical Technology and Biotechnology , 1996, 67(3): 221–226
doi: 10.1002/(SICI)1097-4660(199611)67:3<221::AID-JCTB556>3.0.CO;2-H
40 Christensen H, Sehested K, Corfitzen H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. Journal of Physical Chemistry , 1982, 86(9): 1588–1590
41 Zhou M H, Wu Z C, Shi Y, Li W, Zhong Z T, Ye Q. Synergetic kinetics of phenolic wastewater treatment using UV/H2O2 systems. Gaoxiao Huaxue Gongcheng Xuebao , 2002, 16(5): 536–541 (in Chinese)
42 Joglekar H S, Samant S D, Joshi J B. Kinetics of wet air oxidation of phenol and substituted phenols. Water Research , 1991, 25(2): 135–145
doi: 10.1016/0043-1354(91)90022-I
43 Esplugas S, Giménez J, Contreras S, Pascual E, Rodríguez M. Comparison of different advanced oxidation processes for phenol degradation. Water Research , 2002, 36(4): 1034–1042
doi: 10.1016/S0043-1354(01)00301-3
44 Tryba B, Morawski A W, Inagaki M, Toyoda M. The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe–TiO2 and FecC–TiO2 photocatalysts. Applied Catalysis B: Environmental , 2006, 63(3-4): 215–221
[1] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[2] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[3] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[4] Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue. Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 5-.
[5] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[6] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[7] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[8] Kaikai Zhang, Peng Sun, Yanrong Zhang. Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar[J]. Front. Environ. Sci. Eng., 2019, 13(2): 22-.
[9] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[10] Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation[J]. Front. Environ. Sci. Eng., 2018, 12(1): 2-.
[11] Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie. Phenolic compounds removal by wet air oxidation based processes[J]. Front. Environ. Sci. Eng., 2018, 12(1): 1-.
[12] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[13] Jiwan SINGH, Yoon-Young CHANG, Jae-Kyu YANG, Seon-Hong KANG, Janardhan Reddy KODURU. Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water[J]. Front. Environ. Sci. Eng., 2016, 10(4): 9-.
[14] Veena Bangalore Rangappa, Vidya Shetty Kodialbail, Saidutta Malur Bharthaiyengar. Effect of dilution rate on dynamic and steady-state biofilm characteristics during phenol biodegradation by immobilized Pseudomonas desmolyticum cells in a pulsed plate bioreactor[J]. Front. Environ. Sci. Eng., 2016, 10(4): 16-.
[15] Jiangkun DU,Jianguo BAO,Wei HU. Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode[J]. Front. Environ. Sci. Eng., 2015, 9(5): 919-928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed