Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2010, Vol. 4 Issue (4) : 405-413    https://doi.org/10.1007/s11783-010-0252-8
REVIEW ARTICLE
Application of permanganate in the oxidation of micropollutants: a mini review
Xiaohong GUAN1, Di HE1, Jun MA1(), Guanghao CHEN2
1. State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin 150001, China; 2. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
 Download: PDF(155 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a green oxidant, permanganate has received considerable attention for the removal of micropollutants in drinking water treatment. To provide a better understanding of the oxidation of organic micropollutants with permanganate, the oxidation kinetics of 32 micropollutants were compiled. The pollutants include algal toxins, endocrine disrupting chemicals (EDCs), and pharmaceuticals. The oxidation kinetics of micropollutants by permanganate were found to be first order with respect to both contaminant and permanganate concentrations from which second-order rate constants (k″) were obtained. Permanganate oxidized the heterocyclic aromatics with vinyl moiety (i.e., microcystins, carbamazepine, and dichlorvos) by the addition of double bonds. For the polycyclic aromatic hydrocarbons (PAHs) with alkyl groups, permanganate attacked the benzylic C-H through abstraction of hydrogen. The mechanism for the oxidation of phenolic EDCs by permanganate was a single electron transfer and aromatic ring cleavage. The presence of background matrices could enhance the oxidation of some phenolic EDCs by permanganate, including phenol, chlorinated phenols, bisphenol A, and trichlosan. The toxicity of dichlorvos solution increased after permanganate oxidation, and the estrogenic activity of bisphnol A/estrone increased significantly at the beginning of permanganate oxidation. Therefore, the toxicity of degradation products or intermediates should be determined in the permanganate oxidation processes to better evaluate the applicability of permanganate. The influence of background ions on the permanganate oxidation process is far from clear and should be elucidated in the future studies to better predict the performance of permanganate oxidation of micropollutants. Moreover, methods should be employed to catalyze the permanganate oxidation process to achieve better removal of micropollutants.

Keywords pharmaceuticals      endocrine disrupting chemicals (EDCs)      algal toxins      permanganate      oxidation     
Corresponding Author(s): MA Jun,Email:majun@hit.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Xiaohong GUAN,Di HE,Jun MA, et al. Application of permanganate in the oxidation of micropollutants: a mini review[J]. Front Envir Sci Eng Chin, 2010, 4(4): 405-413.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0252-8
https://academic.hep.com.cn/fese/EN/Y2010/V4/I4/405
null

Note: *The rate constants of chlorinated ethylenes with permanganate were listed here just for comparison.

Tab.1  

Summary of second-order rate constants (k”) for compounds of EDCs and pharmaceuticals in the Mn(VII) oxidation processes

Tab.2  

Summary of second-order rate constants (k”) for the reaction of permanganate with cyanotoxins

1 Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science & Technology , 2002, 36(6): 1202–1211
doi: 10.1021/es011055j
2 Snyder S A, Westerhoff P, Yoon Y, Sedlak D L. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environmental Engineering Science , 2003, 20(5): 449–469
doi: 10.1089/109287503768335931
3 Jobling S, Nolan M, Tyler C R, Brighty G, Sumpter J P. Widespread sexual disruption in wild fish. Environmental Science & Technology , 1998, 32(17): 2498–2506
doi: 10.1021/es9710870
4 Ohe T, Watanabe T, Wakabayashi K. Mutagens in surface waters: a review. Mutation Research , 2004, 567(2-3): 109–149
5 Zhang T C, Emary S C. Jar tests for evaluation of atrazine removal at drinking water treatment plants. Environmental Engineering Science , 1999, 16(6): 417–432
doi: 10.1089/ees.1999.16.417
6 Petrovic M, Eljarrat E, de Alda M J L, Barcelo D. Analysis and environmental levels of endocrine-disrupting compounds in freshwater sediments. TrAC Trends in Analytical Chemistry , 2001, 20: 637–648
doi: 10.1016/S0165-9936(01)00118-2
7 Ternes T A, Meisenheimer M, McDowell D, Sacher F, Brauch H J, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N. Removal of pharmaceuticals during drinking water treatment. Environmental Science & Technology , 2002, 36(17): 3855–3863
doi: 10.1021/es015757k
8 Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology , 2005, 39(17): 6649–6663
doi: 10.1021/es0484799
9 Vongunten U. Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Research , 2003, 37(7): 1443–1467
doi: 10.1016/S0043-1354(02)00457-8
10 Gallard H, von G U. Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Research , 2002, 36(1): 65–74
doi: 10.1016/S0043-1354(01)00187-7
11 Vongunten U. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research , 2003, 37(7): 1469–1487
doi: 10.1016/S0043-1354(02)00458-X
12 Hoigné J, Bader H. Kinetics of reactions of chlorine dioxide (OClO) in water -I. Rate constants for inorganic and organic compounds. Water Research , 1994, 28(1): 45–55
doi: 10.1016/0043-1354(94)90118-X
13 Krasner S W, Weinberg H S, Richardson S D, Pastor S J, Chinn R, Sclimenti M J, Onstad G D, Thruston A D Jr. Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology , 2006, 40(23): 7175–7185
doi: 10.1021/es060353j
14 Jiang J Q, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Research , 2002, 36(6): 1397–1408
doi: 10.1016/S0043-1354(01)00358-X
15 Stewart R. Oxidation Mechanisms. New York: W A Benjamin Inc., 1964
16 Waldemer R H, Tratnyek P G. Kinetics of contaminant degradation by permanganate. Environmental Science & Technology , 2006, 40(3): 1055–1061
doi: 10.1021/es051330s
17 Rodríguez E, Majado M E, Meriluoto J, Acero J L. Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment. Water Research , 2007, 41(1): 102–110
doi: 10.1016/j.watres.2006.10.004
18 Ma J, Graham N, Li G. Effects of permanganate preoxidation in enhancing the coagulation of surface waters–Laboratory case studies. Journal of Water Supply Research and Technology-AQUA , 1997, 46: 1–10
19 Rodríguez E, Sordo A, Metcalf J S, Acero J L. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. Water Research , 2007, 41(9): 2048–2056
doi: 10.1016/j.watres.2007.01.033
20 Hu L, Martin H M, Arce-Bulted O, Sugihara M N, Keating K A, Strathmann T I. Oxidation of carbamazepine by Mn(VII) and Fe(VI): reaction kinetics and mechanism. Environmental Science & Technology , 2009, 43(2): 509–515
doi: 10.1021/es8023513
21 Liu C, Qiang Z, Adams C, Tian F, Zhang T. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment. Water Research , 2009, 43(14): 3435–3442
doi: 10.1016/j.watres.2009.05.001
22 Kao C M, Huang K D, Wang J Y, Chen T Y, Chien H Y. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study. Journal of Hazardous Materials , 2008, 153(3): 919–927
doi: 10.1016/j.jhazmat.2007.09.116
23 Tixier C, Singer H P, Oellers S, Müller S R. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science & Technology , 2003, 37(6): 1061–1068
doi: 10.1021/es025834r
24 Pomati F, Castiglioni S, Zuccato E, Fanelli R, Vigetti D, Rossetti C, Calamari D. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environmental Science & Technology , 2006, 40(7): 2442–2447
doi: 10.1021/es051715a
25 Cooper R L, Kavlock R J. Endocrine disruptors and reproductive development: a weight-of-evidence overview. The Journal of Endocrinology , 1997, 152(2): 159–166
doi: 10.1677/joe.0.1520159
26 Richards S M, Wilson C J, Johnson D J, Castle D M, Lam M, Mabury S A, Sibley P K, Solomon K R. Effects of pharmaceutical mixtures in aquatic microcosms. Environmental Toxicology and Chemistry , 2004, 23(4): 1035–1042
doi: 10.1897/02-616
27 Huber M M, Canonica S, Park G Y, von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology , 2003, 37(5): 1016–1024
doi: 10.1021/es025896h
28 Zhang H, Yamada H, Tsuno H. Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control. Environmental Science & Technology , 2008, 42(9): 3375–3380
doi: 10.1021/es702714e
29 Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. Water Research , 2008, 42(1-2): 13–51
doi: 10.1016/j.watres.2007.07.025
30 Rule K L, Ebbett V R, Vikesland P J. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environmental Science & Technology , 2005, 39(9): 3176–3185
doi: 10.1021/es048943+
31 Sharma V K, Li X Z, Graham N, Doong R A. Ferrate(VI) oxidation of endocrine disruptors and antimicrobials in water. Journal of Water Supply Research and Technology -AQUA , 2008, 57(6): 419–426
32 Jiang J Q, Yin Q, Zhou J L, Pearce P. Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters. Chemosphere , 2005, 61(4): 544–550
doi: 10.1016/j.chemosphere.2005.02.029
33 Lee Y, Yoon J, von Gunten U. Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environmental Science & Technology , 2005, 39(22): 8978–8984
doi: 10.1021/es051198w
34 Sharma V K, Mishra S K, Ray A K. Kinetic assessment of the potassium ferrate(VI) oxidation of antibacterial drug sulfamethoxazole. Chemosphere , 2006, 62(1): 128–134
doi: 10.1016/j.chemosphere.2005.03.095
35 Shao X L, Ma J, Wen G, Yang J J. Oxidation of estrone by permanganate: Reaction kinetics and estrogenicity removal. Chinese Science Bulletin , 2010, 55(9): 802–808
doi: 10.1007/s11434-010-0058-x
36 Jiang J, Pang S Y, Ma J. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides. Environmental Science & Technology , 2009, 43(21): 8326–8331
doi: 10.1021/es901663d
37 Yang J J. Determination of trace permanganate and oxidation of bisphenol A by permanganate. Dissertation for the Master Degree , Harbin: Harbin Institute of Technology, 2008, 32–35 (in Chinese).
38 Zhang J, Li G B, Jun M A. Effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate. Journal of Environmental Sciences (China) , 2003, 15(3): 342–345
39 Radhakrishnamurti P S, Sahu S N. Kinetics and mechanism of oxidation of nitrophenols and nitroanilines by potassium permanganate. Journal of the Indian Chemical Society , 1976, 53: 1154–1155
40 Forsey S P. In situ chemical oxidation of creosote/coal tar residuals: experimental and numerical investigation. Dissertation for the Doctoral Degree . Waterloo: University of Waterloo, 2004
41 Huang K C, Hoag G E, Chheda P, Woody B A, Dobbs G M. Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. Journal of Hazardous Materials , 2001, 87(1-3): 155–169
doi: 10.1016/S0304-3894(01)00241-2
42 Schnarr M, Truax C, Farquhar G, Hood E, Gonullu T, Stickney B. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. Journal of Contaminant Hydrology , 1998, 29(3): 205–224
doi: 10.1016/S0169-7722(97)00012-0
43 Huber M M, Korhonen S, Ternes T A, von Gunten U. Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Research , 2005, 39(15): 3607–3617
doi: 10.1016/j.watres.2005.05.040
44 Westerhoff P, Aiken G, Amy G, Debroux J. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Research , 1999, 33(10): 2265–2276
doi: 10.1016/S0043-1354(98)00447-3
45 Yan Y E, Schwartz F W. Kinetics and mechanisms for TCE oxidation by permanganate. Environmental Science & Technology , 2000, 34(12): 2535–2541
doi: 10.1021/es991279q
46 Lee D G, Sebastian C F. The oxidation of phenol and chlorophenols by alkaline permanganate. Canadian Journal of Chemistry , 1981, 59(18): 2776–2779
doi: 10.1139/v81-401
47 Jiang J, Pang S Y, Ma J. Role of ligands in permanganate oxidation of organics. Environmental Science & Technology , 2010, 44(11): 4270–4275
doi: 10.1021/es100038d
48 Abe Y, Takigami M, Sugino K, Taguchi M, Kojima T, Umemura T, Tsunoda K. Decomposition of phenolic endocrine disrupting chemicals by potassium permanganate and -ray irradiation. Bulletin of the Chemical Society of Japan , 2003, 76(8): 1681–1685
doi: 10.1246/bcsj.76.1681
49 Rudakov E S, Lobachev V L. The kinetics, kinetic isotope effects, and substrate selectivity of alkylbenzene oxidation in aqueous permanganate solutions. 2. Reaction with HMnO4. Kinetics and Catalysis , 1994, 35: 180–187
50 Rudakov E S, Lobachev V L. The first step of oxidation of alkylbenzenes by permanganates in acidic aqueous solutions. Russian Chemical Bulletin , 2000, 49(5): 761–777
doi: 10.1007/BF02494695
51 Gugger M, Lenoir S, Berger C, Ledreux A, Druart J C, Humbert J F, Guette C, Bernard C. First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon , 2005, 45(7): 919–928
doi: 10.1016/j.toxicon.2005.02.031
52 Rodríguez E, Onstad G D, Kull T P J, Metcalf J S, Acero J L, von Gunten U. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research , 2007, 41(15): 3381–3393
doi: 10.1016/j.watres.2007.03.033
53 WHO. Guidelines for Drinking Water Quality, Vol. 1, 3rd ed. Geneva: WHO, 2004
54 Falconer I R. Cyanobacterial Toxins of Drinking Water Supplies: Cylindrospermopsins and Microcystins. Boca Raton: CRC Press, 2005
55 Edwards C, Beattie K A, Scrimgeour C M, Codd G A. Identification of anatoxin-A in benthic cyanobacteria (blue-green algae) and in associated dog poisonings at Loch Insh, Scotland. Toxicon , 1992, 30(10): 1165–1175
doi: 10.1016/0041-0101(92)90432-5
56 Himberg K, Keijola A M, Hiisvirta L, Pyysalo H, Sivonen K. The effect of water treatment processes on the removal of hepotoxins from Microcystis and Oscillatoria cyanobacteria: A laboratory study. Water Research , 1989, 23(8): 979–984
doi: 10.1016/0043-1354(89)90171-1
57 Rositano J, Newcombe G, Nicholson B, Sztajnbok P. Ozonation of NOM and algal toxins in four treated waters. Water Research , 2001, 35(1): 23–32
doi: 10.1016/S0043-1354(00)00252-9
58 Nicholson B, Rositano J, Burch M D. Destruction of cyanobacterial peptide hepatotoxins by chlorine and chloramine. Water Research , 1994, 28(6): 1297–1303
doi: 10.1016/0043-1354(94)90294-1
59 Liu I, Lawton L A, Robertson P K. Mechanistic studies of the photocatalytic oxidation of microcystin-LR: an investigation of byproducts of the decomposition process. Environmental Science & Technology , 2003, 37(14): 3214–3219
doi: 10.1021/es0201855
60 Kull T P J, Backlund P H, Karlsson K M, Meriluoto J A O. Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: reaction kinetics, characterization, and toxicity of reaction products. Environmental Science & Technology , 2004, 38(22): 6025–6031
doi: 10.1021/es0400032
61 Bellar T A, Lichtenberg J J, Kroner R C. The occurrence of organohalides in chlorinated drinking waters. Journal American Water Works Association , 1974, 66(12): 703–706
62 Kronberg L, Vartiainen T. Ames mutagenicity and concentration of the strong mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone and its geometric isomer E-chloro-3-(dichloromethyl)-4-oxobutenoic acid in tap waters. Mutation Research & Genetic Toxicology , 1988, 206(2): 177–182
63 Hall T, Hart J, Croll B, Gregory P. Laboratory-scale investigations of algal toxin removal by water treatment. Journal of the Chartered Institution of Water and Environmental Management , 2000, 14(2): 143–149
doi: 10.1111/j.1747-6593.2000.tb00241.x
64 Rositano J. The destruction of cyanobacterial peptide toxins by oxidants used in water treatment. Urban Water Research Association of Australia, Report 110 . 1996
65 Pietsch J, Bornmann K, Schmidt W. Relevance of intra- and extracellular cyanotoxins for drinking water treatment. Acta Hydrochimica et Hydrobiologica , 2002, 30(1): 7–15
doi: 10.1002/1521-401X(200207)30:1<7::AID-AHEH7>3.0.CO;2-W
66 Drikas M, Chow C W K, House J, Burch M D. Using coagulation, flocculation, and settling to remove toxic cyanobacteria. Journal American Water Works Association , 2001, 93(2): 100–111
67 Chen J J, Yeh H H. The mechanisms of potassium permanganate on algae removal. Water Research , 2005, 39(18): 4420–4428
doi: 10.1016/j.watres.2005.08.032
68 Hou C R, Jia R B, Hu W R. Study on the removal of algae and algal toxin with permanganate enhanced coagulation. Overseas Construction Material Technology , 2006, 27(3): 27–29 (in Chinese)
69 Lawton L A, Robertson P K J. Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews , 1999, 28(4): 217–224
doi: 10.1039/a805416i
70 He D, Guan X H, Ma J, Yu M. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate. Environmental Science & Technology , 2009, 43(21): 8332–8337
doi: 10.1021/es901700m
71 He D, Guan X H, Ma J, Yang X, Cui C W. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate. Journal of Hazardous Materials , 2010, 182(1-3): 681–688
doi: 10.1016/j.jhazmat.2010.06.086
72 Rodríguez E M, Acero J L, Spoof L, Meriluoto J. Oxidation of MC-LR and -RR with chlorine and potassium permanganate: toxicity of the reaction products. Water Research , 2008, 42(6-7): 1744–1752
doi: 10.1016/j.watres.2007.10.039
[1] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[2] Zeshen Tian, Bo Wang, Yuyang Li, Bo Shen, Fengjuan Li, Xianghua Wen. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater: Utilizing low-density static magnetic field[J]. Front. Environ. Sci. Eng., 2021, 15(5): 81-.
[3] Shuchang Wang, Binbin Shao, Junlian Qiao, Xiaohong Guan. Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps[J]. Front. Environ. Sci. Eng., 2021, 15(5): 80-.
[4] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[5] Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou. Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 53-.
[6] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[7] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[8] Senem Yazici Guvenc, Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2-.
[9] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[10] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[11] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[12] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[13] Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia[J]. Front. Environ. Sci. Eng., 2020, 14(3): 38-.
[14] Feng Zhu, Zhijian Yao, Wenliang Ji, Deye Liu, Hao Zhang, Aimin Li, Zongli Huo, Qing Zhou. An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters[J]. Front. Environ. Sci. Eng., 2020, 14(3): 51-.
[15] Xiangyu Wang, Yu Xie, Guizhen Yang, Jiming Hao, Jun Ma, Ping Ning. Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach[J]. Front. Environ. Sci. Eng., 2020, 14(2): 22-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed