Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    0, Vol. Issue () : 212-226    https://doi.org/10.1007/s11783-010-0255-5
RESEARCH ARTICLE
Adsorption of fluoride on clay minerals and their mechanisms using X-ray photoelectron spectroscopy
Junyi DU, Daishe WU(), Huayun XIAO, Ping LI
Department of Environmental Science and Engineering, Nanchang University, Nanchang 330031, China
 Download: PDF(840 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This research investigates the adsorption mechanisms of fluoride (F) on four clay minerals (kaolinite, montmorillonite, chlorite, and illite) under different F- concentrations and reaction times by probing their fluoride superficial layer binding energies and element compositions using X-ray photoelectron spectroscopy (XPS). At high F- concentrations (C0 = 5–1000 mg·L-1), the amount of F- adsorbed (QF), amount of hydroxide released by clay minerals, solution F- concentration, and the pH increase with increasing C0. The increases are remarkable at C0>50 mg·L-1. The QF increases significantly by continuously modifying the pH level. At C0<5–100 mg·L-1, clay minerals adsorb H+ to protonate aluminum-bound surface-active hydroxyl sites in the superficial layers and induce F- binding. As the C0 increases, F-, along with other cations, is adsorbed to form a quasi-cryolite structure. At C0>100 mg·L-1, new minerals precipitate and the product depends on the critical Al3+ concentration. At [Al3+]>10-11.94 mol·L-1, cryolite forms, while at [Al3+]<10-11.94 mol·L-1, AlF3 is formed. At low C0 (0.3–1.5 mg·L-1), proton transfer occurs, and the F- adsorption capabilities of the clay minerals increase with time.

Keywords clay mineral      fluoride (F)      adsorption mechanism      X-ray photoelectron spectroscopy (XPS)     
Corresponding Author(s): WU Daishe,Email:wudaishe@hotmail.com, dswu@ncu.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Junyi DU,Daishe WU,Huayun XIAO, et al. Adsorption of fluoride on clay minerals and their mechanisms using X-ray photoelectron spectroscopy[J]. Front Envir Sci Eng Chin, 0, (): 212-226.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0255-5
https://academic.hep.com.cn/fese/EN/Y0/V/I/212
pHWFTFCECSSApercentage content of some major elements
10∶1100∶1AlSiFeCaMgKNa
K6.005.565.038367.63316.9520.420.90.390.110.040.040.05
M7.717.6112.0125578.77313.106.2031.43.061.822.250.090.08
Ch7.727.6410.689739.54495.518.4830.52.800.900.972.220.59
I5.895.893.2610203.20192.999.0330.11.990.050.744.570.08
Tab.1  Solution pH at water/soil 10∶1 or 100∶1, water-soluble fluoride (WF) (mg·g), total fluoride (TF) (mg·g), CEC (mmol·g), SSA (m·kg), and percentage content of some major elements of clay minerals (%)
Fig.1  F concentration and adsorbed F amount on clay minerals in Expt. (a) Kaolinite; (b) montmorillonite; (c) chlorite; (d) illite
clay mineralsC0/(mg·L-1)
051020501005001000
KpH5.566.927.067.067.307.387.708.06
RHA0.650.911.151.652.2812.916.2
Fad/OH0.941.361.632.002.001.111.74
MpH7.617.617.687.727.737.837.897.86
RHA0.450.630.631.134.009.7515.3
Fad/OH0.100.310.700.592.384.503.30
ChpH7.647.727.707.757.727.727.998.05
RHA0.500.370.630.631.257.7514.0
Fad/OH0.090.510.581.110.521.351.08
IpH5.896.566.686.746.917.007.317.41
RHA0.450.450.450.951.456.2111.1
Fad/OH0.200.500.960.880.580.610.58
Tab.2  Solution pH, RHA (10 mol·50 mL), and F/OH of clay minerals that reacted in solutions with high fluoride concentration
Fig.2  XPS wide scan spectra of clay minerals that reacted in high solution. (a) Kaolinite; (b) montmorillonite; (c) chlorite; (d) illite
C0/(mg·L-1)
blank105010050010001000 w
KFSBE685.85685.54685.49685.56685.56685.54685.64/687.62
FSRC0.250.710.851.562.481.252.03
AlSRC/SiSRC0.850.880.850.870.840.800.87
MFSBE685.05685.31685.24685.28685.42685.23685.60
FSRC0.230.210.270.281.381.882.06
AlSRC/SiSRC0.240.270.280.260.270.270.24
ChFSBE685.18685.42685.34685.31685.54685.55685.70/687.85
FSRC0.240.270.270.360.982.20.81
AlSRC/SiSRC0.510.510.480.480.470.470.45
IFSBE685.30685.10685.14685.26685.45/687.13685.39/687.34685.46/687.20
FSRC0.130.250.380.441.061.370.34
AlSRC/SiSRC0.490.410.380.400.400.470.31
Tab.3  XPS narrow scan spectra data of clay minerals that reacted in high solution (FSBE (eV), F (%), Al/Si)
fluoride compoundsFSBE/eV
KF683.7/683.78/683.8/683.9
NaF683.7/684/684.27/684.3/684.5
CaF2684.63/684.8/684.9/685/685.2
FeF3685
MgF2685.1/685.32/685.4/685.52/685.7
Na3AlF6 (cryolite)685.5
Na2SiF6686/686.4
AlF3·3H2O686.2/686.3
Al(OH)0.7F2.3686.68
α-AlF3687.65
β-AlF3687.79
Tab.4  FSBE of several fluoride compounds
Fig.3  pH of clay minerals soaked in solutions at low C vs. time. (a) Kaolinite; (b) montmorillonite; (c) chlorite; (d) illite
Fig.4  of clay minerals soaked in solutions at low C vs. time. (a) Kaolinite; (b) montmorillonite; (c) chlorite; (d) illite
Fig.5  XPS narrow scan spectra of clay minerals that reacted with low solution. (a) Kaolinite; (b) montmorillonite; (c) chlorite; (d) illite
clay Mineralsblank0.3 mg·L-11.5 mg·L-1
10 d180 d10 d180 d
KFSBE685.85685.51685.55685.51685.66
FSRC0.250.250.220.280.23
AlSRC/SiSRC0.850.890.870.860.85
MFSBE685.05685.30685.20685.24685.18
FSRC0.230.180.190.200.19
AlSRC/SiSRC0.240.260.250.250.27
ChFSBE685.18685.24685.11685.04685.23
FSRC0.240.210.190.230.19
AlSRC/SiSRC0.510.490.510.520.50
IFSBE685.30684.96685.10685.00685.08
FSRC0.130.140.150.140.14
AlSRC/SiSRC0.490.480.490.470.46
Tab.5  XPS narrow scan spectra data of clay minerals that reacted with low solution [FSBE (eV), F(%), and Al/Si]
Fig.6  Schematic diagram of a single layer structure in kaolinite. (a) Blank; (b) 0.3–5 mg F·L; (c) 5–100 mg F·L; (d) 100–1000 mg F·L
Fig.7  Schematic diagram of a single layer structure in montmorillonite. (a) Blank; (b) 0.3–50 mg F·L; (c) 50–100?mg F·L; (d) 100–1000 mg F·L
Fig.8  Schematic diagram of single layer structure in chlorite. (a) Blank; (b) 0.3–1.5 mg F·L; (c) 5–100 mg F·L; (d) 100–1000?mg F·L
Fig.9  Schematic diagram of single layer structure in illite. (a) Blank; (b) 0.3–1.5 mg F·L; (c) 5–100 mg F·L; (d) 100–1000 mg F·L
Fig.10  Solubility of fluoride aluminum minerals
Fig.11  Schematic diagrams of proton transfer. (a) Kaolinite; (b) montmorillonite, chlorite, and illite
1 Ozsvath D L. Fluoride and environmental health: a review. Reviews in Environmental Science and Biotechnology , 2009, 8(1): 59–79
doi: 10.1007/s11157-008-9136-9
2 Wang W Y, Li R B, Luo K L. Adsorption and leaching of fluoride in soils and its health impact. Fluoride , 2002, 35: 122–129
3 Wu D S, Zheng B S, Wang A M, Yu G Q. Fluoride exposure from burning coal-clay in Guizhou Province, China. Fluoride , 2004, 37: 20–27
4 Chen G J, Yu D F. Fluorine in Environment. Beijing: Scientific Press, 1990 (in Chinese)
5 Wu W, Xie Z, Xu J, Hong Z, Liu C. Characteristics of forms of fluorine in soils and influential factors. Huan Jing Ke Xue , 2002, 23(2): 104–108 (in Chinese)
6 Samson H R. Fluoride adsorption by clay minerals and hydrated aluminum. Clay Mineralogy Bulletin , 1952, 1: 266–271
doi: 10.1180/claymin.1952.001.8.06
7 Huang P M, Jackson M L. Mechanism of reaction of neutral fluoride solution with layer silicates and oxides of soils. Soil Science Society of America Proceeding , 1965, 29: 661–665
8 Romo L A. Role of lattice hydroxyls of kaolinite in phosphate fixation and their replacement by fluoride. Journal of Colloid Science , 1954, 9: 385–392
doi: 10.1016/0095-8522(54)90026-4
9 Kau P M H, Smith D W, Binning P. Experimental sorption of fluoride by kaolinite and bentonite. Geoderma , 1998, 84(1–3): 89–108
doi: 10.1016/S0016-7061(97)00122-5
10 Weerasooriya R, Wickramarathne H U S, Dharmagunawardhane H A. Surface complexation modeling of fluoride adsorption onto kaolinite. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 1998, 144(1–3): 267–273
doi: 10.1016/S0927-7757(98)00646-3
11 Semmens B, Meggy A B. The reaction of kaolin with fluorides I. Effect of neutral and acid sodium fluoride solutions. Journal of Applied Chemistry , 1966, 16: 122–125
doi: 10.1002/jctb.5010160403
12 He Q, Chen J F. Preliminary study on release of hydroxo group from surface of soil colloids. Acta Pedology Sinica , 1984, 21(4): 401–409 (in Chinese)
13 Bower C A, Hatcher J T. Adsorption of fluoride by soils and minerals. Soil Science , 1967, 103(3): 151–154
doi: 10.1097/00010694-196703000-00001
14 Harrington L F, Cooper E M, Vasudevan D. Fluoride sorption and associated aluminum release in variable charge soils. Journal of Colloid and Interface Science , 2003, 267(2): 302–313
doi: 10.1016/S0021-9797(03)00609-X
15 Wang H H, Zhu M X, Jiang X, Wang F. Interaction of fluoride with red soil and its environmental implications. Journal of Agro-Environment Science , 2006, 25(4): 974–978 (in Chinese)
16 Barrow N J, Shaw T C. The slow reactions between soil and anions: 6. Effect of time and temperature of contact on fluoride. Soil Science , 1977, 124(5): 265–278
doi: 10.1097/00010694-197711000-00003
17 Koppelman M H, Emerson A B, Dillard J G. Adsorbed Cr(III) on chlorite, illite, and kaolinite: an X-ray photoelectron spectroscopic study. Clays and Clay Minerals , 1980, 28(2): 119–124
doi: 10.1346/CCMN.1980.0280207
18 Koppelman M H, Dillard J G. A study of the adsorption of Ni(II) and Cu(II) by clay minerals. Clays and Clay Minerals , 1977, 25(6): 457–462
doi: 10.1346/CCMN.1977.0250612
19 Koppelman M H, Dillard J G. Adsorption of Cr(NH3)63+ and Cr(en)33+ on clay minerals and the characterization of chromium by X-ray photoelectron spectroscopy. Clays and Clay Minerals , 1980, 28(3): 211–216
doi: 10.1346/CCMN.1980.0280307
20 Koppelman M H, Dillard J G. An X-ray photoelectron spectroscopic (XPS) study of cobalt adsorbed on the clay mineral chlorite. Journal of Colloid and Interface Science , 1978, 66(2): 345–351
doi: 10.1016/0021-9797(78)90313-2
21 Zhu L J, Li J Y, Mu C G. Environmental Geochemistry of fluorine in the rock, soil and water system in the karst areas of central Guizhou. Carsologica Sinica , 1999, 18(2): 109–115
22 State Bureau of Technical Supervision. GB7484–87, Water quality-Determination of fluoride-Ion selective electrode method. Beijing: Standardization Administration of the People's Republic of China, 1987, &lt;http://www.sac.gov.cn&gt; (in Chinese)
23 Dickman S R, Bray R H. Replacement of adsorbed phosphate from kaolinite by fluoride. Soil Science , 1941, 52(4): 263–274
doi: 10.1097/00010694-194110000-00002
24 Bracewell J M, Campell A S, Mitchell B D. An assessment of some thermal and chemical techniques used in the study of poorly-ordered alumino-silicates in soil clays. Clay Minerals , 1970, 8(3): 325–335
doi: 10.1180/claymin.1970.008.3.10
25 State Bureau of Technical Supervision. GB/T603–2002, Chemical reagents-Preparations of reagent solutions for use in test methods. Beijing: Standardization Administration of the People's Republic of China, 2002&lt;http://www.sac.gov.cn&gt; (in Chinese)
26 Nordin J P, Sullivan D J, Phillips B L, Casey W H. Mechanisms for fuoride-promoted dissolution of bayerite [β-Al(OH)3(s)] and boehmite [γ-AlOOH]: 19F-NMR spectroscopy and aqueous surface chemistry. Geochimica et Cosmochimica Acta , 1999, 63(21): 3513–3524
doi: 10.1016/S0016-7037(99)00185-4
27 Pulfer K, Schindler P W, Westall J C, Grauer R. Kinetics and mechanism of dissolution of bayerite (γ-AI(OH)3) in HNO3-HF solutions at 298.2°K. Journal of Colloid and Interface Science , 1984, 101(2): 554–564
doi: 10.1016/0021-9797(84)90067-5
28 Parfitt R L, Russel J D. Adsorption on hydrous oxides: 4. Mechanisms of adsorption of various ions on geothite. Journal of Soil Science , 1977, 28(2): 297–305
doi: 10.1111/j.1365-2389.1977.tb02238.x
29 Hiemstra T, Riemsdijk W H V. Fluoride adsorption on goethite in relation to different types of surface sites. Journal of Colloid and Interface Science , 2000, 225(1): 94–104
doi: 10.1006/jcis.1999.6697
30 Phillips B L, Casey W H, Crawford S N. Solvent exchange in AlFx(H2O)3-x6-x(aq) complexes: Ligand-directed labilization of water as an analogue for ligand-induced dissolution of oxide minerals. Geochimica et Cosmochimica Acta , 1997, 61(15): 3041–3049
doi: 10.1016/S0016-7037(97)00149-X
31 Elrashidi M A, Lindsay W L. Chemical equilibria of fluorine in soils: a theoretical development. Soil Science , 1986, 141(4): 274–280
doi: 10.1097/00010694-198604000-00004
[1] Na Li, Boqiang Gao, Ran Yang, Hu Yang. Simple fabrication of carboxymethyl cellulose and κ-carrageenan composite aerogel with efficient performance in removal of fluoroquinolone antibiotics from water[J]. Front. Environ. Sci. Eng., 2022, 16(10): 133-.
[2] Jianzhang Sun, Baoyu Gao, Yuanxia Luo, Moxi Xue, Xing Xu, Qinyan Yue, Yan Wang. Application and mechanism of polysaccharide extracted from Enteromorpha to remove nano-ZnO and humic acid in coagulation process[J]. Front. Environ. Sci. Eng., 2018, 12(3): 11-.
[3] Yao NIE, Shubo DENG, Bin WANG, Jun HUANG, Gang YU. Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads[J]. Front. Environ. Sci. Eng., 2014, 8(5): 675-682.
[4] Farhah Amalya ISMAIL, Ahmad Zaharin ARIS. Experimental determination of Cd2+ adsorption mechanism on low-cost biological waste[J]. Front Envir Sci Eng, 2013, 7(3): 356-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed