Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (1) : 140-148    https://doi.org/10.1007/s11783-010-0258-2
RESEARCH ARTICLE
Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor
Sheng CHANG, Jianzheng LI(), Feng LIU
State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(370 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An anaerobic contact reactor (ACR) system comprising a continuous flow stirred tank reactor (CSTR) with settler to decouple the hydraulic retention time (HRT) from solids retention time (SRT) was developed for fermentative hydrogen production from diluted molasses by mixed microbial cultures. The ACR was operated at various volumetric loading rates (VLRs) of 20–44 kgCOD·m-3·d-1 with constant HRT of 6 h under mesophilic conditions of 35°C. The SRT was maintained at about 46–50 h in the system. At the initial VLR of 20 kgCOD·m-3·d-1, the hydrogen production rate dropped from 22.6 to 1.58 L·d-1 as the hydrogen was consumed by the hydrogentrophic methanogen. After increasing the VLR to 28 kgCOD·m-3·d-1 and discharging the sludge for 6 consecutive times, the hydrogentrophic methanogens were eliminated, and the hydrogen content reached 36.4%. As the VLR was increased to 44 kgCOD·m-3·d-1, the hydrogen production rate and hydrogen yield increased to 42.1 L·d-1 and 1.40 mol H2·molglucose-consumed-1, respectively. The results showed that a stable ethanol-type fermentation that favored hydrogen production in the reactor was thus established with the sludge loading rate (SLR) of 2.0–2.5 kgCOD·kgMLVSS-1·d-1. It was found that the ethanol increased more than other liquid fermentation products, and the ethanol/acetic acid (mol/mol) ratio increased from 1.27 to 2.45 when the VLR increased from 28 to 44 kgCOD·m-3·d-1, whereas the hydrogen composition decreased from 40.4% to 36.4%. The results suggested that the anaerobic contact reactor was a promising bioprocess for fermentative hydrogen production.

Keywords fermentative hydrogen production      anaerobic contact reactor (ACR)      sludge loading rate (SLR)      butyric acid-type fermentation      ethanol-type fermentation     
Corresponding Author(s): LI Jianzheng,Email:ljz6677@163.com   
Issue Date: 05 March 2011
 Cite this article:   
Sheng CHANG,Jianzheng LI,Feng LIU. Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor[J]. Front Envir Sci Eng Chin, 2011, 5(1): 140-148.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0258-2
https://academic.hep.com.cn/fese/EN/Y2011/V5/I1/140
Fig.1  Schematic diagram of the integrated biohydrogen reactor comprising CSTR with settler
stagestime/dHRT/hSRT/hCOD/(mg·L-1)VLR/(kgCOD·m-3·d-1)
11-24650±3.5500020
225-65647±2.8700028
366-78646±3.1900036
479-93646±2.71100044
Tab.1  Operation strategy of the anaerobic contact reactor
Fig.2  Variation of parameters of the anaerobic contact reactor for biohydrogen production during the operational period (Note: a-the biogas production rate; b-liquid products; c-pH and alkalinity; d-biomass; e-ORP and sludge loading rate)
steady periods/dspecific hydrogen production rate of reactor/(L·L-1·d-1)total sugar degradation /%removed COD/(g·d-1)SHPRa)/(mol·kg MLVSS-1·d-1)hydrogen conversion/(L·g COD-1)HYb)/(mol H2·mol glucose-1)
55-65 (in stage 2)2.43±0.3085±1.2112.6±0.59.38±0.890.26±0.021.31±0.02
71-78 (in stage 3)3.19±0.2780±1.566.0±0.410.71±0.450.58±0.041.39±0.03
86-93 (In stage 4)3.51±0.4572±2.172±0.59.38±0.890.58±0.051.40±0.02
Tab.2  Performance and characteristic of hydrogen production in the ACR
Fig.3  Representative pathways of fermentative hydrogen evolution and some other by-products (Fd, oxidized ferredoxin; FdH, reduced ferredoxin)
1 Das D, Veziroglu T N. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy , 2001, 26(1): 13-28
doi: 10.1016/S0360-3199(00)00058-6
2 Das D, Veziroglu T N. Advances in biological hydrogen production processes. International Journal of Hydrogen Energy , 2008, 33(21): 6046-6057
doi: 10.1016/j.ijhydene.2008.07.098
3 Valdez-Vazquez I, Poggi-Varaldo H M. Hydrogen production by fermentative consortia. Renewable & Sustainable Energy Reviews , 2009, 13(5): 1000-1013
doi: 10.1016/j.rser.2008.03.003
4 Hawkes F R, Hussy I, Kyazze G, Dinsdale R, Hawkes D L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. International Journal of Hydrogen Energy , 2007, 32(2): 172-184
doi: 10.1016/j.ijhydene.2006.08.014
5 Ren N Q, Li J Z, Li B K, Wang Y, Liu S R. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy , 2006, 31(15): 2147-2157
doi: 10.1016/j.ijhydene.2006.02.011
6 Cheong D Y, Hansen C L, Stevens D K. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor. Biotechnology and Bioengineering , 2007, 96(3): 421-432
doi: 10.1002/bit.21221
7 Chang J S, Lee K S, Lin P J. Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy , 2002, 27(11-12): 1167-1174
doi: 10.1016/S0360-3199(02)00130-1
8 Zhang Z, Tay J, Show K, Yan R, Liang D, Lee D, Jiang W. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. International Journal of Hydrogen Energy , 2007, 32(2): 185-191
doi: 10.1016/j.ijhydene.2006.08.017
9 Chang F Y, Lin C Y. Biohydrogen production using up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy , 2004, 29(1): 33-39
doi: 10.1016/S0360-3199(03)00082-X
10 Fang H H P, Liu H, Zhang T. Bio-hydrogen production from wastewater. Water Science and Technology: Water Supply , 2004, 4(1): 77-85
11 Lay J J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering, 2000, 68(3): 269-278
doi: 10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
12 Y UenoS Haruta, M Ishii, Y Igarashi. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology, 2001, 57(4): 555-562
doi: 10.1007/s002530100806
13 Ren N Q, Chua H, Chan S Y, Tsang Y F, Wang Y J, Sin N. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresource Technology, 2007, 98(9): 1774-1780
doi: 10.1016/j.biortech.2006.07.026
14 Wu K J, Chang J S. Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochemistry (Barking, London, England), 2007, 42(2): 279-284
doi: 10.1016/j.procbio.2006.07.021
15 Lee K S, Lo Y C, Lin P J, Chang J S. Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. International Journal of Hydrogen Energy, 2006, 31(12): 1648-1657
doi: 10.1016/j.ijhydene.2005.12.020
16 Guo W Q, Ren N Q, Wang X J, Xiang W S, Meng Z H, Ding J, Qu Y Y, Zhang L S. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. International Journal of Hydrogen Energy, 2008, 33(19): 4981-4988
doi: 10.1016/j.ijhydene.2008.05.033
17 Hu B, Chen S L. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 2007, 32(15): 3266-3273
doi: 10.1016/j.ijhydene.2007.03.005
18 Zhang Z P, Show K Y, Tay J H, Liang D T, Lee D J. Biohydrogen production with anaerobic fluidized bed reactors—a comparison of biofilm-based and granule-based systems. International Journal of Hydrogen Energy, 2008, 33(5): 1559-1564
doi: 10.1016/j.ijhydene.2007.09.048
19 Oh S E, Iyer P, Bruns M A, Logan B E. Biological hydrogen production using a membrane bioreactor. Biotechnology and Bioengineering, 2004, 87(1): 119-127
doi: 10.1002/bit.20127
20 Kim J O, Kim Y H, Ryu J Y, Song B K, Kim I H, Yeom S H. Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation. Process Biochemistry, 2005, 40(3-4): 1331-1337
doi: 10.1016/j.procbio.2004.06.008
21 Lin C N, Wu S Y, Chang J S. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. International Journal of Hydrogen Energy, 2006, 31(15): 2200-2210
doi: 10.1016/j.ijhydene.2006.05.012
22 Hamdi M, Garcia J L. Comparison between anaerobic filter and anaerobic contact process for fermented olive mill wastewaters. Bioresource Technology, 1991, 38(1): 23-29
doi: 10.1016/0960-8524(91)90217-8
23 Defour D, Derycke D, Liessens J, Pipyn P. Field experience with different systems for biomass accumulation in anaerobic reactor technology. Water Science and Technology, 1994, 30(12): 181-191
24 Hawkes F R, Donnelly T, Anderson G K. Comparative performance of anaerobic digesters operating on ice-cream waste-water. Water Research, 1995, 29(2): 525-533
doi: 10.1016/0043-1354(94)00163-2
25 Hafez H, Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, EI Naggar H. Comparative assessment of decoupling of biomass and hydraulic retention times in hydrogen production bioreactors. International Journal of Hydrogen Energy, 2009, 34(18): 7603-7611
doi: 10.1016/j.ijhydene.2009.07.060
26 Hafez H, Nakhla G, Naggar H E. An integrated system for hydrogen and methane production during landfill leachate treatment. International Journal of Hydrogen Energy, 2010, 35(10): 5010-5014
doi: 10.1016/j.ijhydene.2009.08.050
27 Li J Z, Li B K, Zhu G F, Ren N Q, Bo L X, He J G. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). International Journal of Hydrogen Energy, 2007, 32(15): 3274-3283
doi: 10.1016/j.ijhydene.2007.04.023
28 DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colormetric method for determination of sugars and related substances. Analytical Chemistry , 1956, 28(3): 350-356
doi: 10.1021/ac60111a017
29 APHA. Standard methods for the examination of water and wastewater.21st ed. Washington DC: American Public Health Accociation. 2005
30 Ren N Q, Gong M L. Acclimation strategy of a biohydrogen producing population in a continuous-Flow Reactor with Carbohydrate Fermentation. Engineering in Life Sciences, 2006, 6(4): 403-409
doi: 10.1002/elsc.200520140
31 Li J Z, Zheng G C, He J G, Chang S, Qin Z. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. Biotechnology Advances , 2009, 27(5): 573-577
doi: 10.1016/j.biotechadv.2009.04.007
32 Fang H H P, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology , 2002, 82(1): 87-93
doi: 10.1016/S0960-8524(01)00110-9
33 Khanal S K, Chen W H, Li L, Sung S. Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy , 2004, 29(11): 1123-1131
34 Kim I S, Hwang M H, Jang N J, Hyun S H, Lee S T. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. International Journal of Hydrogen Energy , 2004, 29(11): 1133-1140
35 Ginkel S V, Sung S. Biohydrogen Production as a function of pH and substrate concentration. Environmental Science & Technology , 2001, 35(24): 4726-4730
doi: 10.1021/es001979r
36 Hwang M H, Jang N J, Hyun S H, Kim I S. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. Journal of Biotechnology , 2004, 111(3): 297-309
doi: 10.1016/j.jbiotec.2004.04.024
37 Chou C J, Jenney F E Jr, Adams M W W, Kelly R M. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metabolic Engineering , 2008, 10(6): 394-404
doi: 10.1016/j.ymben.2008.06.007
38 Vanginkel S W, Logan B. Increased biological hydrogen production with reduced organic loading. Water Research , 2005, 39(16): 3819-3826
doi: 10.1016/j.watres.2005.07.021
39 Lee H S, Salerno M B, Rittmann B E. Thermodynamic evaluation on H2 production in glucose fermentation. Environmental Science & Technology , 2008, 42(7): 2401-2407
doi: 10.1021/es702610v
40 Lee H S, Rittmann B E. Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnology and Bioengineering , 2009, 102(3): 749-758
doi: 10.1002/bit.22107
[1] Gefu ZHU, Chaoxiang LIU, Jianzheng LI, Nanqi REN, Lin LIU, Xu HUANG. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia[J]. Front Envir Sci Eng, 2013, 7(1): 143-150.
[2] Bo WANG, Wei WAN, Jianlong WANG, . Effects of nitrate concentration on biological hydrogen production by mixed cultures[J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed