Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (1) : 99-110    https://doi.org/10.1007/s11783-010-0260-8
RESEARCH ARTICLE
Joint effects of Penta-BDE and heavy metals on Daphnia magna survival, its antioxidant enzyme activities and lipid peroxidation
Baohua TANG1, Lingyan ZHU1, Qixing ZHOU1,2()
1. Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education); Tianjin Key Laboratory of Environmental Remediation and Pollution Control; College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; 2. Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
 Download: PDF(268 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The joint toxicity of Penta-BDE (Pe-BDE) and heavy metals including cadmium and copper on Daphnia magna (D. magna) was evaluated on the basis of determining the 48 h survival, antioxidative enzyme responses, and lipid peroxidation. The response was classified as additive, greater than additive, or less than additive by comparing the measured “toxic units, TU” with one. Based on the survival of D. magna, less-than-additive interactions were found in most of mixtures treatments. This may be attributed to the different toxicity mechanism between Pe-BDE and metals. Cu and Cd played a greater role in toxicity than what Pe-BDE did. As for the superoxide dismutase (SOD) and catalase (CAT) activity, most response was less than additive. For the glutathione S-transferases (GST) activity, most of the greater-than-additive responses were found in the Cu plus Pe-BDE treatments, but the additive responses occurred in Cd plus Pe-BDE treatments and binary metal treatments. For lipid peroxide levels, which were measured as malondialdehyde (MDA) levels, less-than-additive response occurred in the 50% Cd plus 50% Cu and ternary mixture treatments. Results suggested that Pe-BDE, Cd, and Cu could induce different patterns of antioxidant enzyme responses, such as antioxidant/prooxidant responses, depending on their capability to produce reactive oxygen species and antioxidant enzymes to detoxify them.

Keywords polybrominated diphenyl ethers (PBDEs)      heavy metal      mixture toxicity      toxic units (TUs)      antioxidant enzyme      lipid peroxidation     
Corresponding Author(s): ZHOU Qixing,Email:zhouqx@nankai.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Baohua TANG,Lingyan ZHU,Qixing ZHOU. Joint effects of Penta-BDE and heavy metals on Daphnia magna survival, its antioxidant enzyme activities and lipid peroxidation[J]. Front Envir Sci Eng Chin, 2011, 5(1): 99-110.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0260-8
https://academic.hep.com.cn/fese/EN/Y2011/V5/I1/99
treatmentCd/%Cu/%PE-BDE/%
1control000
2solvent control000
31TU Cd10000
41TU Cu01000
51TU Pe-BDE00100
6Cd+ Cu25750
7Cd+ Cu50500
8Cd+ Cu75250
9Cd+ Pe-BDE25075
10Cd+ Pe-BDE50050
11Cd+ Pe-BDE75025
12Cu+ Pe-BDE02575
13Cu+ Pe-BDE05050
14Cu+ Pe-BDE07525
15Cd+ Cu+ Pe-BDE252550
16Cd+ Cu+ Pe-BDE255025
17Cd+ Cu+ Pe-BDE502525
Tab.1  Mixture test concentrations as percentages of one TU
Fig.1  Observed and expected adult survivals in toxicity test with 95% confidence intervals. Mixtures of Cd, Cu, and Pe-BDE are given as percentages of one TU. The asterisk (*) indicates a significant difference at <0.05
Fig.2  Average measured and expected activities of CAT in juveniles toxicity test with 95% confidence intervals. Mixtures of Cd, Cu, and Pe-BDE are given as percentages of one TU. The asterisk (*) indicates a significant difference at <0.05
Fig.3  Average measured and expected activities of SOD in juveniles toxicity test with 95% confidence intervals. Mixtures of Cd, Cu, and Pe-BDE are given as percentages of one TU. The asterisk (*) indicates a significant difference at <0.05
Fig.4  Average measured and expected activities of GST in juveniles toxicity test with 95% confidence intervals. Mixtures of Cd, Cu, and Pe-BDE are given as percentages of one TU. The asterisk (*) indicates a significant difference at <0.05
Fig.5  Average measured and expected levels of lipid peroxide measured as TBARS in juveniles toxicity test with 95% confidence intervals. Mixtures of Cd, Cu, and Pe-BDE are given as percentages of one TU. The asterisk (*) indicates a significant difference at <0.05
1 Zhou Q. Ecology of Combined Pollution.Beijing: China Environmental Science Press, 1995 (in chinese)
2 Enserink E L, Maas-Diepeveen J L, Van Leeuwen C J. Combined effects of metals: an ecotoxicological evaluation. Water Research , 1991, 25(6): 679–687
doi: 10.1016/0043-1354(91)90043-P
3 McCarty L S, Borgert C J. Review of the toxicity of chemical mixtures containing at least one organochlorine. Regulatory Toxicology and Pharmacology , 2006, 45(2): 104–118
doi: 10.1016/j.yrtph.2006.03.002 pmid:16701931
4 McCarty L S, Dixon D G, Ozburn G W, Smith A D. Toxicokinetic modeling of mixtures of organic chemicals. Environmental Toxicology and Chemistry , 1992, 11(7): 1037–1047
doi: 10.1002/etc.5620110716
5 Loewe S, Muischnek H. über Kombinationswirkungen. Naunyn-Schmiedeberg's Archives of Pharmacology , 1926, 114(5–6): 313–326
doi: 10.1007/BF01952257
6 Loewe S. Die Mischarznei. Journal of Molecular Medicine, 1927, 6(23): 1077–1085
7 Plackett R L, Hewlett P S. Quantal responses to mixtures of poisons. Journal of Royral Statistic Society: Series B , 1952, 14(2): 141–163
8 Bliss C I. The toxicity of poisons applied jointly. Annals of Applied Biology , 1939, 26(3): 585–615
doi: 10.1111/j.1744-7348.1939.tb06990.x
9 Berenbaum M C. The expected effect of a combination of agents: the general solution. Journal of Theoretical Biology , 1985, 114(3): 413–431
doi: 10.1016/S0022-5193(85)80176-4 pmid:4021503
10 de Wit C A. An overview of brominated flame retardants in the environment. Chemosphere , 2002, 46(5): 583–624
doi: 10.1016/S0045-6535(01)00225-9 pmid:11999784
11 Darnerud P O, Eriksen G S, Jóhannesson T, Larsen P B, Viluksela M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives , 2001, 109(Suppl 1): 49–68
doi: 10.2307/3434846 pmid:11250805
12 Norén K, Meironyté D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20–30 years. Chemosphere , 2000, 40(9–11): 1111–1123
doi: 10.1016/S0045-6535(99)00360-4 pmid:10739053
13 Alaee M, Arias P, Sj?din A, Bergman A. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International , 2003, 29(6): 683–689
doi: 10.1016/S0160-4120(03)00121-1 pmid:12850087
14 Darnerud P O. Toxic effects of brominated flame retardants in man and in wildlife. Environment International , 2003, 29(6): 841–853
doi: 10.1016/S0160-4120(03)00107-7 pmid:12850100
15 Holm G, Norrgren L, Andersson T, Thurén A. Effects of exposure to food contaminated with PBDE, PCN or PCB on reproduction, liver morphology and cytochrome P450 activity in the three-spined stickleback, Gasterosteus aculeatus. Aquatic Toxicology (Amsterdam, Netherlands) , 1993, 27(1–2): 33–50
doi: 10.1016/0166-445X(93)90045-3
16 Tjaernlund U, Ericson G, Oern U, de Wit C.Effects of Two Polybrominated Diphenyl Ethers on Rainbow Trout (Oncorhynchus mykiss) Exposed via Food. Marine Environmental Research, 1998, 46(1–5): 107–112
17 Coles J A, Farley S R, Pipe R K. Alteration of the immune response of the common marine mussel Mytilus edulis resulting from exposure to cadmium. Diseases of Aquatic Organisms , 1995, 22(1): 59–65
doi: 10.3354/dao022059
18 Nath R. Copper deficiency and heart disease: molecular basis, recent advances and current concepts. International Journal of Biochemistry &amp; Cell Biology , 1997, 29(11): 1245–1254
doi: 10.1016/S1357-2725(97)00060-5 pmid:9451822
19 Suzuki K T, Someya A, Komada Y, Ogra Y. Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice. Journal of Inorganic Biochemistry , 2002, 88(2): 173–182
doi: 10.1016/S0162-0134(01)00376-2 pmid:11803037
20 Harris E D. Copper as a cofactor and regulator of copper, zinc superoxide dismutase. Journal of Nutrition , 1992, 122(Suppl 3): 636–640
pmid:1542024
21 Lai C C, Huang W H, Klevay L M, Gunning W T 3rd, Chiu T H. Antioxidant enzyme gene transcription in copper-deficient rat liver. Free Radical Biology &amp; Medicine , 1996, 21(2): 233–240
doi: 10.1016/0891-5849(96)00029-9 pmid:8818639
22 Van Tilborg W, Van Assche F. Risk assessment of essential elements: proposal for a fundamentally new approach. SETAC NEWS , 1996, 16: 28–29
23 Khangarot B S. Copper-induced hepatic ultrastructural alterations in the snake-headed fish, Channa punctatus. Ecotoxicology and Environmental Safety , 1992, 23(3): 282–293
doi: 10.1016/0147-6513(92)90078-H pmid:1376233
24 Gaetke L M, Chow C K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology , 2003, 189(1–2): 147–163
doi: 10.1016/S0300-483X(03)00159-8 pmid:12821289
25 Pourahmad J, O’Brien P J, Jokar F, Daraei B. Carcinogenic metal induced sites of reactive oxygen species formation in hepatocytes. Toxicology In Vitro , 2003, 17(5–6): 803–810
doi: 10.1016/S0887-2333(03)00123-1 pmid:14599481
26 Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology , 2003, 192(2–3): 95–117
doi: 10.1016/S0300-483X(03)00305-6 pmid:14580780
27 Sandrini J Z, Regoli F, Fattorini D, Notti A, Inácio A F, Linde-Arias A R, Laurino J, Bainy A C D, Marins L F F, Monserrat J M. Short-term responses to cadmium exposure in the estuarine polychaete Laeonereis acuta (polychaeta, Nereididae): sub cellular distribution and oxidative stress generation. Environmental Toxicology and Chemistry , 2006, 25(5): 1337–1344
doi: 10.1897/05-275R.1 pmid:16704067
28 Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology &amp; Medicine , 1995, 18(2): 321–336
doi: 10.1016/0891-5849(94)00159-H pmid:7744317
29 Wang Y, Fang J, Leonard S S, Rao K M. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radical Biology and Medicine , 2004, 36(11): 1434–1443
doi: 10.1016/j.freeradbiomed.2004.03.010 pmid:15135180
30 Zhou Q, Kong F, Zhu L. Ecotoxicology.Beijing: Science Press, 2004 (in Chinese)
31 Adema D M M. Daphnia magna as a test animal in acute and chronic toxicity tests. Hydrobiologia , 1978, 59(2): 125–134
doi: 10.1007/BF00020773
32 Lewis P, Weber C. Study of the Reliability of Daphnia Acute Toxicity Tests; proceedings of the Aquatic Toxicology and Hazard Assessment: Seventh Symposium ASTM STP 854, Philadelphia, 1985
33 OECD. OECD guidine for testing of chemicals. 202, Daphnia sp, Acute immobilisation test. Paris: Organisation for Economic Co-operation and Development, OECD . 2004: 1–12
34 Elendt B P, Bias W R. Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna. Water Research , 1990, 24(9): 1157–1167
doi: 10.1016/0043-1354(90)90180-E
35 OECD. OECD guidine for testing of chemicals. 211, Daphnia magna reproduction test. Paris: Organisation for Economic Co-operation and Development, OECD. 2008: 1–23
36 Mueller K E, Mueller-Spitz S R, Henry H F, Vonderheide A P, Soman R S, Kinkle B K, Shann J R. Fate of pentabrominated diphenyl ethers in soil: abiotic sorption, plant uptake, and the impact of interspecific plant interactions. Environmental Science &amp; Technology , 2006, 40(21): 6662–6667
doi: 10.1021/es060776l pmid:17144293
37 Xu J B, Yuan X F, Lang P Z. Determination of catalase activity and catalase inhibition by ultraviolet spectrophotometry. Chinese Environmental Chemistry , 1997, 16(1): 73–76 (in Chinese)
38 Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry , 1974, 47(3): 469–474
doi: 10.1111/j.1432-1033.1974.tb03714.x pmid:4215654
39 Habig W H, Pabst M J, Jakoby W B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry , 1974, 249(22): 7130–7139
pmid:4436300
40 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 1976, 72(1–2): 248–254
doi: 10.1016/0003-2697(76)90527-3 pmid:942051
41 Leibovitz B E, Siegel B V. Aspects of free radical reactions in biological systems: aging. Journal of Gerontology , 1980, 35(1): 45–56
pmid:6243146
42 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry , 1979, 95(2): 351–358
doi: 10.1016/0003-2697(79)90738-3 pmid:36810
43 European Chemicals Bureau. European Union Risk Assessment Report: Diphenyl ether, pentabromo derivative (Pentabromodiphenyl ether).Luxembourg: Institute for Health and Consumer Protection, 2000
44 Palm A, Cousins I T, Mackay D, Tysklind M, Metcalfe C, Alaee M. Assessing the environmental fate of chemicals of emerging concern: a case study of the polybrominated diphenyl ethers. Environmental Pollution , 2002, 117(2): 195–213
doi: 10.1016/S0269-7491(01)00276-7 pmid:11916035
45 Eaton A D, Clesceri L S, Rice E W, Greenberg A E, Franson M A H. Standard Methods for the Examination of Water and Wastewater.21 ed. Washington: American Public Health Association 2005
46 Dawson D A, Wilke T S. Evaluation of the frog embryo teratogenesis assay: Xenopus (Fetax) as a model system for mixture toxicity hazard assessment. Environmental Toxicology and Chemistry , 1991, 10(7): 941–948
47 Van-Der-Geest H G, Greve G D, Boivin M E, Kraak M H S, Gestel C A M V. Mixture toxicity of copper and diazinon to larvae of the mayfly (Ephoron virgo) judging additivity at different effect levels. Environmental Toxicology and Chemistry , 2000, 19(12): 2900–2905
48 Van-Gestel C A M, Hensbergen P J. Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collenbola: Isotomidae) in relation to bioavailability in the soil. Environmental Toxicology and Chemistry , 1997, 16(6): 1177–1186
49 Mahar A M, Watzin M C. Effects of metal and organophosphate mixtures on Ceriodaphnia dubia survival and reproduction. Environmental Toxicology and Chemistry , 2005, 24(7): 1579–1586
doi: 10.1897/04-162R.1 pmid:16050572
50 Kraak M H S, Lavy D, Schoon H, Toussaint M, Peeters W H M, Straalen N M V. Ecotoxicity of mixtures of metals to zebra mussels Dreissena polymorpha. Environmental Toxicology and Chemistry , 1994, 13(1): 109–114
51 Newsted J L, Jones P D, Giesy J P, Crawford R A, Ankley G T, Tillitt D E, Gooch J W, Denison M S. Development of toxic equivalency factors for PCB congeners and the assessment of TCDD and PCB mixtures in rainbow trout. Environmental Toxicology and Chemistry , 1995, 14(5): 861–871
doi: 10.1002/etc.5620140518
52 Winston G W, Regoli F, Dugas A J Jr, Fong J H, Blanchard K A. A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free Radical Biology &amp; Medicine , 1998, 24(3): 480–493
doi: 10.1016/S0891-5849(97)00277-3 pmid:9438561
53 Ketterer B, Coles B, Meyer D J. The role of glutathione in detoxication. Environmental Health Perspectives , 1983, 49: 59–69
doi: 10.2307/3429581 pmid:6339228
54 Barata C, Navarro J C, Varo I, Riva M C, Arun S, Porte C. Changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in Daphnia magna during the aging process. Comparative Biochemistry and Physiology. Part B, Biochemistry &amp; Molecular Biology , 2005, 140(1): 81–90
doi: 10.1016/j.cbpc.2004.09.025 pmid:15621513
55 Borgeraas J, Hessen D O. UV-B induced mortality and antioxidant activities in Daphnia magna at different oxygen concentrations and temperatures. Journal of Plankton Research , 2000, 22(6): 1167–1183
doi: 10.1093/plankt/22.6.1167
56 Borgeraas J, Hessen D O. Diurnal patterns of antioxidant activity in alpine and arctic Daphnia under in situ UV-radiation. Archiv fuer Hydrobiologie , 2002, 156(1): 83–95
doi: 10.1127/0003-9136/2002/0156-0083
57 Borgeraas J, Hessen D O. Variations of antioxidant enzymes in Daphnia species and populations as related to UV exposure. Hydrobiologia , 2002, 477(1/3): 15–30
doi: 10.1023/A:1021056409446
58 Vega M P, Pizarro R A. Oxidative stress and defence mechanisms of the freshwater cladoceran Daphnia longispina exposed to UV radiation. Journal of Photochemistry and Photobiology. B, Biology , 2000, 54(2–3): 121–125
doi: 10.1016/S1011-1344(00)00005-1 pmid:10836541
59 Hodqson E. A Textbook of Modern Toxicology. Hoboken, New Jersey: John Wiley &amp; Sons, Inc, 2004
60 March B G E. Acute toxicity of binary mixtures of five cations (Cu2+, Cd2+, Zn2+, Mg2+, and K+) to the freshwater amphipod gammarus lacustris (Sars): Alternative Descriptive Models. Canadian Journal of Fisheries and Aquatic Sciences , 1988, 45(4): 625–633
doi: 10.1139/f88-076
61 Fernie K J, Shutt J L, Mayne G, Hoffman D, Letcher R J, Drouillard K G, Ritchie I J. Exposure to polybrominated diphenyl ethers (PBDEs): changes in thyroid, vitamin A, glutathione homeostasis, and oxidative stress in American kestrels (Falco sparverius). Toxicological Sciences , 2005, 88(2): 375–383
doi: 10.1093/toxsci/kfi295 pmid:16120752
62 Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine.Oxford: Oxford University Press, 1999
63 Reistad T, Mariussen E. A commercial mixture of the brominated flame retardant pentabrominated diphenyl ether (DE-71) induces respiratory burst in human neutrophil granulocytes in vitro. Toxicological Sciences , 2005, 87(1): 57–65
doi: 10.1093/toxsci/kfi222 pmid:15958660
64 He P, He W, Wang A, Xia T, Xu B, Zhang M, Chen X. PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal neurons. Neurotoxicology , 2008, 29(1): 124–129
doi: 10.1016/j.neuro.2007.10.002 pmid:18054389
65 Orbea A, Fahimi H D, Cajaraville M P. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochemistry and Cell Biology , 2000, 114(5): 393–404
pmid:11151409
66 Brouwer M, Brouwer T H. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, Callinectes sapidus. Archives of Biochemistry and Biophysics , 1998, 351(2): 257–264
doi: 10.1006/abbi.1997.0568 pmid:9514663
67 Doyotte A, Cossu C, Jacquin M C, Babut M, Vasseur P. Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquatic Toxicology (Amsterdam, Netherlands) , 1997, 39(2): 93–110
doi: 10.1016/S0166-445X(97)00024-6
68 Geracitano L, Monserrat J M, Bianchini A. Physiological and antioxidant enzyme responses to acute and chronic exposure of Laeonereis acuta (Polychaeta, Nereididae) to copper. Journal of Experimental Marine Biology and Ecology , 2002, 277(2): 145–156
doi: 10.1016/S0022-0981(02)00306-4
69 Geret F, Serafim A, Barreira L, Bebianno M J. Response of antioxidant systems to copper in the gills of the clam Ruditapes decussatus. Marine Environmental Research , 2002, 54(3–5): 413–417
doi: 10.1016/S0141-1136(02)00164-2 pmid:12408595
70 Gómez-Mendikute A, Cajaraville M P. Comparative effects of cadmium, copper, paraquat and benzo[a]pyrene on the actin cytoskeleton and production of reactive oxygen species (ROS) in mussel haemocytes. Toxicology In Vitro , 2003, 17(5–6): 539–546
doi: 10.1016/S0887-2333(03)00093-6 pmid:14599442
71 Larson K G, Roberson B S, Hetrick F M. Effect of environmental pollutants on the chemiluminescence of hemocytes from the American oyster Crassostrea virginica. Diseases of Aquatic Organisms , 1989, 6: 131–136
doi: 10.3354/dao006131
72 Zhou Q, Cheng Y, Zhang Q, Liang J D. The quantitative relationship analysis of ecotoxicological effect of combined pollution. Science in China (Series C), 2003, 33(6): 566–573 (in Chinese)
73 Mulcahy R T, Wartman M A, Bailey H H, Gipp J J. Constitutive and beta-naphthoflavone-induced expression of the human γ-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. The Journal of Biological Chemistry , 1997, 272(11): 7445–7454
doi: 10.1074/jbc.272.11.7445 pmid:9054446
74 Shi M M, Iwamoto T, Forman H J. gamma-Glutamylcysteine synthetase and GSH increase in quinone-induced oxidative stress in BPAEC. American Journal of Physiology. Lung Cellular and Molecular Physiology , 1994, 267(4 Pt 1): L414–L421
pmid:7943345
75 Stephensen E, Sturve J, F?rlin L. Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comparative Biochemistry and Physiology Part C: Toxicology &amp; Pharmacology , 2002, 133(3): 435–442
pmid:12379427
76 Rikans L E, Hornbrook K R. Lipid peroxidation, antioxidant protection and aging. Biochimica et Biophysica Acta , 1997, 1362(2–3): 116–127
pmid:9540842
77 Barata C, Varo I, Navarro J C, Arun S, Porte C. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology Part C: Toxicology &amp; Pharmacology , 2005, 140(2): 175–186
doi: 10.1016/j.cca.2005.01.013 pmid:15907763
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[4] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[5] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[6] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[7] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[8] Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang. Magnetotactic bacteria: Characteristics and environmental applications[J]. Front. Environ. Sci. Eng., 2020, 14(4): 56-.
[9] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[10] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[11] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[12] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[13] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[14] Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal[J]. Front. Environ. Sci. Eng., 2019, 13(4): 49-.
[15] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed