Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (1) : 45-50    https://doi.org/10.1007/s11783-010-0262-6
RESEARCH ARTICLE
A new regeneration approach to cation resins with aluminum salts: application of desalination by its mixed bed
Zhigang LIU(), Shaomin ZHU, Yansheng LI
School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
 Download: PDF(156 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel method for the regeneration of cation exchange resins by aluminum (Al) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of Al3+ concentration and the pH of regeneration solution on resin transformation had been studied. The desalination experiments were carried out to evaluate the characteristics of the Al form resins. Experimental results showed that the regeneration rate of resins was strictly dependent on Al3+ concentration and the pH of the solution. Compared to the conventional regeneration method, the Al form mixed bed exhibited the same desalination capability as the H form mixed bed (MB), and the total organic carbon (TOC) removal was up to 90%, clearly higher than that of the H form. Al salt solution could be utilized repeatedly to regenerate Al form resins.

Keywords aluminum (Al) form resins      desalination      mixed bed (MB)      regeneration     
Corresponding Author(s): LIU Zhigang,Email:lzg@djtu.edu.cn   
Issue Date: 01 February 2012
 Cite this article:   
Zhigang LIU,Shaomin ZHU,Yansheng LI. A new regeneration approach to cation resins with aluminum salts: application of desalination by its mixed bed[J]. Front Envir Sci Eng, 2012, 6(1): 45-50.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0262-6
https://academic.hep.com.cn/fese/EN/Y2012/V6/I1/45
Fig.1  Effect of Al concentration on transformation rate of resins. Transformation conditions: resins volume 50 mL, AlCl volume 50 mL, pH= 1.0, stirring time 30 min
Fig.1  Effect of Al concentration on transformation rate of resins. Transformation conditions: resins volume 50 mL, AlCl volume 50 mL, pH= 1.0, stirring time 30 min
Fig.2  Effect of pH on transformation rate of resins. Transformation conditions: resins volume 50 mL, AlCl volume 50mL, Al concentration 0.7 mol·L, stirring time 30 min
Fig.2  Effect of pH on transformation rate of resins. Transformation conditions: resins volume 50 mL, AlCl volume 50mL, Al concentration 0.7 mol·L, stirring time 30 min
Fig.3  Desalination of the mixed bed of Al form resins. Reaction conditions: resins volume 90 mL (the volume ratio of cation resin and anion resin is 1∶2), feed water conductivity 150 μs·cm
Fig.3  Desalination of the mixed bed of Al form resins. Reaction conditions: resins volume 90 mL (the volume ratio of cation resin and anion resin is 1∶2), feed water conductivity 150 μs·cm
Fig.4  Comparison of desalination of the Al form mixed bed and that of the conventional mixed bed. Reaction conditions: resins volume 20 L (the volume ratio of cation resin and anion resin is 1∶2), feed water conductivity 150 μs·cm
Fig.4  Comparison of desalination of the Al form mixed bed and that of the conventional mixed bed. Reaction conditions: resins volume 20 L (the volume ratio of cation resin and anion resin is 1∶2), feed water conductivity 150 μs·cm
Fig.5  Comparison of TOC removal for the Al form mixed bed and that of the conventional mixed bed. Reaction conditions: resins volume 20 L, TOC value of feed water 8.3 mg·L
Fig.5  Comparison of TOC removal for the Al form mixed bed and that of the conventional mixed bed. Reaction conditions: resins volume 20 L, TOC value of feed water 8.3 mg·L
times of regeneration12345
residual amount of Al3+ in regeneration solution/(mmol·40mL-1)28.07.72.60.40.03
times of BV516411110876
maximum TOC removal/%9188929091
Tab.1  Residual amount of Al in regeneration solution and effluent volume of mixed bed in regeneration/desalination cycles
1 El-Dessouky H T, Ettouney H M, Al-Roumi Y. Multi-stage flash desalination: present and future outlook. Chemical Engineering Journal , 1999, 73(2): 173-190
doi: 10.1016/S1385-8947(99)00035-2
2 Fedorenko V I. Ultrapure water production by continuous electrodeionization method: technology and economy. Pharmaceutical Chemistry Journal , 2004, 38(1): 35-40
doi: 10.1023/B:PHAC.0000027643.24808.81
3 Abbas A, Al-Bastaki N. Modeling of an RO water desalination unit using neural networks. Chemical Engineering Journal , 2005, 114(1-3): 139-143
doi: 10.1016/j.cej.2005.07.016
4 Grabowski A, Zhang GQ, Strathmann H, Eigenberger G. The production of high purity water by continuous electrodeionization with bipolar membranes: Influence of the anion-exchange membrane permselectivity. Journal of Membrane Science , 2006, 281(1-2): 297-306
doi: 10.1016/j.memsci.2006.03.044
5 Rengaraj S, Yeon K H, Moon S H. Removal of nickel from water and synthetic nuclear power plant coolant water by ion exchange resins. Journal of Radioanalytical and Nuclear Chemistry , 2002, 253(2): 241-245
doi: 10.1023/A:1019645708495
6 Cavaco S A, Fernandes S, Quina M M, Ferreira L M. Removal of chromium from electroplating industry effluents by ion exchange resins. Journal of Hazardous Materials , 2007, 144(3): 634-638
doi: 10.1016/j.jhazmat.2007.01.087
7 Pehlivan E, Altun T. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Journal of Hazardous Materials , 2007, 140(1-2): 299-307
doi: 10.1016/j.jhazmat.2006.09.011
8 Helfferich F G. Ion Exchange. New York: Courier Dover Publications, 1995
9 Simister C, Caron F, Gedye R. Determination of the thermal degradation rate of polystyrene-divinyl benzene ion exchange resins in ultra-pure water at ambient and service temperature. Journal of Radioanalytical and Nuclear Chemistry , 2004, 261(3): 523-531
doi: 10.1023/B:JRNC.0000037092.52163.3d
10 Arm S T, Blanchard D L, Fiskum S K. Chemical degradation of an ion exchange resin processing salt solutions. Separation and Purification Technology , 2005, 43(1): 59-69
doi: 10.1016/j.seppur.2004.10.001
11 Bi S P, Wang C Y, Cao Q, Zhang C H. Studies on the mechanism of hydrolysis and polymerization of aluminium salts in aqueous solution: correlations between the “Core-links” model and “Cage-like” Keggin-Al13 model. Coordination Chemistry Reviews , 2004, 248(5-6): 441-455
doi: 10.1016/j.ccr.2003.11.001
12 Zhao H, Liu H J, Qu J H. Effect of pH on the aluminum salts hydrolysis during coagulation process: formation and decomposition of polymeric aluminum species. Journal of Colloid and Interface Science , 2009, 330(1): 105-112
doi: 10.1016/j.jcis.2008.10.020
13 Lu Y J, Chakrabarti C L, Back M H, Gregoire D C, Schroeder W H. Kinetic studies of aluminum and zinc speciation in river water and snow. Analytica Chimica Acta , 1994, 293(1-2): 95-108
doi: 10.1016/0003-2670(94)00166-9
14 Kabsch-Korbutowicz M. Effect of Al coagulant type on natural organic matter removal efficiency in coagulation/ultrafiltration process. Desalination , 2005, 185(1-3): 327-333
doi: 10.1016/j.desal.2005.02.083
15 Jones A M, Pham A N, Collins R N, Waite T D. Dissociation kinetics of Fe(III)– and Al(III)–natural organic matter complexes at pH 6.0 and 8.0 and 25°C. Geochimica et Cosmochimica Acta , 2009, 73(10): 2875-2887
doi: 10.1016/j.gca.2009.02.022
16 Shao W J, Li X M, Cao Q L, Luo F, Li J M, Du Y Y. Adsorption of arsenate and arsenite anions from aqueous medium by using metal(III)-loaded amberlite resins. Hydrometallurgy , 2008, 91(1-4): 138-143
doi: 10.1016/j.hydromet.2008.01.005
17 Liu Z G, Wang Y, Li Y S, Chang H. Electro-assisted regeneration of ion exchange resins. Frontiers of Environmental Science & Engineering in China , 2008, 2(4): 410-414
doi: 10.1007/s11783-008-0069-x
18 Sauer C A. Characteristics of strong-acid cation exchangers 1. optimization of regeneration. Desalination , 1984, 51(3): 313-324
doi: 10.1016/0011-9164(84)87004-6
[1] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[2] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[3] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
[4] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[5] Tong Li, Ke Xiao, Bo Yang, Guilong Peng, Fenglei Liu, Liyan Tao, Siyuan Chen, Haoran Wei, Gang Yu, Shubo Deng. Recovery of Ni(II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition[J]. Front. Environ. Sci. Eng., 2019, 13(6): 91-.
[6] Junhua LI,Yue PENG,Huazhen CHANG,Xiang LI,John C. CRITTENDEN,Jiming HAO. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front. Environ. Sci. Eng., 2016, 10(3): 413-427.
[7] Yongjuan WU,Wentao ZHANG,Wenxiao YU,Hui LIU,Rufen CHEN,Yu WEI. Ferrihydrite preparation and its application for removal of anionic dyes[J]. Front. Environ. Sci. Eng., 2015, 9(3): 411-418.
[8] Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN. Comparison of the removal of monovalent and divalent cations in the microbial desalination cell[J]. Front. Environ. Sci. Eng., 2015, 9(2): 317-323.
[9] Hongbo NA,Tianle ZHU,Zhiming LIU,Yifei SUN. Promoting effect of Zr on the catalytic combustion of methane over Pd/γ-Al2O3 catalyst[J]. Front.Environ.Sci.Eng., 2014, 8(5): 659-665.
[10] Yue WEN, Chao XU, Gang LIU, Yi CHEN, Qi ZHOU. Enhanced nitrogen removal reliability and efficiency in integrated constructed wetland microcosms using zeolite[J]. Front Envir Sci Eng, 2012, 6(1): 140-147.
[11] Fangfang CHANG, Jiuhui QU, Xu ZHAO, Wenjun LIU, Kun WU. Migration of manganese and iron during the adsorption-regeneration cycles for arsenic removal[J]. Front Envir Sci Eng Chin, 2011, 5(4): 512-518.
[12] LIU Zhigang, WANG Ying, LI Yansheng, CHANG Hui. Electro-assisted regeneration of ion exchange resins[J]. Front.Environ.Sci.Eng., 2008, 2(4): 410-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed