Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 455-462    https://doi.org/10.1007/s11783-010-0275-1
RESEARCH ARTICLE
Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions
Chunhua XU1,2, Dandan CHENG1, Baoyu GAO1(), Zhilei YIN3, Qinyan YUE1, Xian ZHAO2
1. Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China; 2. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; 3. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
 Download: PDF(265 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Batch adsorption experiments were conducted to explore the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand. We investigated the key factors which affected the adsorption process such as adsorbent dosage, initial pH, initial Cr(VI) ion concentration, contact time and temperature. The uptake of Cr(VI) was very rapid and 44.3%, 51.6%, 58.9% of the adsorption happened during the first 180 minutes at 293K, 303K and 313K, respectively. The pseudo-second-order rate equation successfully described the adsorption kinetics. To study the adsorption isotherm, two equilibrium models, the Langmuir and Freundlich isotherms, were adopted. At 293K, 303K and 313K, the adsorption capacities obtained from the Langmuir isotherm were 0.060, 0.070 and 0.076 mg Cr(VI) per gram of the adsorbent, respectively. Thermodynamic parameters such as the change of energy, enthalpy and entropy were calculated using the equilibrium constants. The negative value of ΔG0 and the positive value of ΔH0 showed that the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand was spontaneous, endothermic and occurred by physisorption.

Keywords β-FeOOH-coated sand      Cr(VI)      adsorption      isotherm      kinetics     
Corresponding Author(s): GAO Baoyu,Email:bygao@sdu.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Chunhua XU,Dandan CHENG,Baoyu GAO, et al. Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions[J]. Front Envir Sci Eng, 2012, 6(4): 455-462.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0275-1
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/455
Fig.1  SEM image of sand (a), -FeOOH-coated sand (b), TEM image of -FeOOH (c)
Fig.2  XRD pattern of -FeOOH-coated sand
Fig.3  Effect of sorbent dose on Cr(VI) removal by -FeOOH-coated sand
Fig.4  Effect of pH on Cr(VI) removal by -FeOOH-coated sand
Fig.5  Langmuir isotherm of Cr(VI) adsorption
Fig.6  Freundlich isotherm of Cr(VI) adsorption
T /KLangmuir isothermFreundlich isotherm
Qm /(mg·g-1)K /(L·mg-1)R21/nKFR2
2930.0600.6700.9760.3160.0240.975
3030.0700.7540.9760.3120.0290.972
3130.0760.7990.9790.3110.0320.952
Tab.1  Values of the constants and of the two models
Fig.7  Plots of ln vs 1 for adsorption of Cr(VI) on -FeOOH-coated sand
T /KK /(L·mg-1)KL /(L·mol-1)ΔG0 /(kJ·mol-1)ΔH0 /(kJ·mol-1)ΔS0 /(J·mol-1·K-1)
2930.6703.551-8.6476.71352.494
3030.7543.669-9.237
3130.7993.727-9.694
Tab.2  Values of thermodynamic parameters for Cr(VI) removal with -FeOOH-coated sand
Fig.8  Adsorption of Cr(VI) over time at C = 5mg·L and different temperatures
Fig.9  Adsorption of Cr(VI) over time at = 303K and different concentrations
Fig.10  Pseudo-second-order kinetic model
T/KC0 /(mg·L-1)Qe /(mg·g-1)pseudo-first-order modelpseudo-second-order model
k1/minQe1 /(mg·g-1)R21k2 /(g·mg-1·min-1)Q e2 /(mg·g-1)h /(mg·g-1·min-1)R2
30330.02640.01320.01250.9893.62980.02670.00260.997
30380.04320.00970.01530.7973.08780.04310.00570.999
29350.03200.00880.01410.9242.84520.03170.00290.997
30350.03460.00820.01250.9213.64690.03410.00420.998
31350.03880.00870.01520.9592.80420.03850.00420.998
Tab.3  Kinetics parameters for adsorption of Cr(VI)
1 Hsu C L, Wang S L, Tzou Y M. Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III). Environmental Science & Technology , 2007, 41(22): 7907-7914
doi: 10.1021/es0718164 pmid:18075107
2 Xing Y Q, Chen X M, Wang D H. Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater. Environmental Science & Technology , 2007, 41(4): 1439-1443
doi: 10.1021/es061499l pmid:17593754
3 Ai Z H, Cheng Y, Zhang L Z, Qiu J R. Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires. Environmental Science & Technology , 2008, 42(18): 6955-6960
doi: 10.1021/es800962m pmid:18853815
4 Hu J, Chen G, Lo I. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research , 2005, 39(18): 4528-4536
doi: 10.1016/j.watres.2005.05.051 pmid:16146639
5 Kuo S, Bembenek R. Sorption and desorption of chromate by wood shavings impregnated with iron or aluminum oxide. Bioresource Technology , 2008, 99(13): 5617-5625
doi: 10.1016/j.biortech.2007.10.062 pmid:18206368
6 Yu H B, Chen S, Quan X, Zhao H M, Zhang Y B. Fabrication of a TiO2-BDD heterojunction and its application as a photocatalyst for the simultaneous oxidation of an azo dye and reduction of Cr(VI). Environmental Science & Technology , 2008, 42(10): 3791-3796
doi: 10.1021/es702948e pmid:18546724
7 Ludwig R D, Su C M, Lee T R, Wilkin R T, Acree S D, Ross R R, Keeley A. In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation. Environmental Science & Technology , 2007, 41(15): 5299-5305
doi: 10.1021/es070025z pmid:17822094
8 Demoisson F, Mullet M, Humbert B. Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species. Environmental Science & Technology , 2005, 39(22): 8747-8752
doi: 10.1021/es050717s pmid:16323772
9 Dialynas E, Diamadopoulos E. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination , 2009, 238(1-3): 302-311
doi: 10.1016/j.desal.2008.01.046
10 Hu J, Lo I, Chen G. Performance and mechanism of chromate(VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe2O3) nanoparticles. Separation and Purification Technology , 2007, 58(1): 76-82
doi: 10.1016/j.seppur.2007.07.023
11 Aggarwal D, Goyal M, Bansal R C. Adsorption of chromium by activated carbon from aqueous solution. Carbon , 1999, 37(12): 1989-1997
doi: 10.1016/S0008-6223(99)00072-X
12 Lazaridis N K, Asouhidou D D. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO(3) hydrotalcite. Water Research , 2003, 37(12): 2875-2882
doi: 10.1016/S0043-1354(03)00119-2 pmid:12767290
13 Kratochvil D, Pimentel P, Volesky B. Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environmental Science & Technology , 1998, 32(18): 2693-2698
doi: 10.1021/es971073u
14 Babel S, Opiso E M. Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. International Journal of Environmental Science and Technology , 2007, 4: 99-107
15 Brown P A, Gill S A, Allen S J. Metal removal from wastewater using peat. Water Research , 2000, 34(16): 3907-3916
doi: 10.1016/S0043-1354(00)00152-4
16 Weng C H, Wang J H, Huang C P. Adsorption of Cr(VI) onto TiO2 from dilute aqueous solutions. Water Science and Technology , 1997, 35(7): 55-62
doi: 10.1016/S0273-1223(97)00114-5
17 Babel S, Kurniawan T A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere , 2004, 54(7): 951-967
doi: 10.1016/j.chemosphere.2003.10.001 pmid:14637353
18 Gao H, Liu Y G, Zeng G M, Xu W H, Li T, Xia W B. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. Journal of Hazardous Materials , 2008, 150(2): 446-452
doi: 10.1016/j.jhazmat.2007.04.126 pmid:17574737
19 Yueksel O, Hanife B. The removal of heavy metals by using agricultural wastes. Water Science and Technology , 1993, 28: 247-255
20 Dupont L, Guillon E. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology , 2003, 37(18): 4235-4241
doi: 10.1021/es0342345 pmid:14524458
21 Liu T Z, Tsang D C, Lo I M. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environmental Science & Technology , 2008, 42(6): 2092-2098
doi: 10.1021/es072059c pmid:18409642
22 Lai C H, Chen C Y. Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere , 2001, 44(5): 1177-1184
doi: 10.1016/S0045-6535(00)00307-6 pmid:11513406
23 Xu Y, Axe L. Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption. Journal of Colloid and Interface Science , 2005, 282(1): 11-19
doi: 10.1016/j.jcis.2004.08.057 pmid:15576075
24 Hsu J C, Lin C J, Liao C H, Chen S T. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. Journal of Hazardous Materials , 2008, 153(1-2): 817-826
doi: 10.1016/j.jhazmat.2007.09.031 pmid:17988793
25 Shukla A, Zhang Y H, Dubey P, Margrave J L, Shukla S S. The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials , 2002, 95(1-2): 137-152
doi: 10.1016/S0304-3894(02)00089-4 pmid:12409244
26 Sun Z Y, Zhu C S, Chen H S, Gong W Q. A comparative study of the adsorption of chromium on five different types of FeOOH. Acta Petrologica et Mineralogica , 2003, 22(4): 352-354
27 Jeong Y, Fan M H, Singh S, Chuang C L, Saha B, Leeuwen H V. Evaluation of iron oxide and aluminum oxide as potential arsenic() adsorbents. Chemical Engineering and Processing , 2007, 46: 1030-1039
28 Demirbas E, Dizge N, Sulak M T, Kobya M. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal , 2009, 148(2-3): 480-487
doi: 10.1016/j.cej.2008.09.027
29 Vonoepen B, K?rdel W, Klein W. Sorption of nonpolar and polar compounds to soils: Processes, measurement and experience with the applicability of the modified OECD-guideline 106. Chemosphere , 1991, 22(3-4): 285-304
doi: 10.1016/0045-6535(91)90318-8
30 Jaycock M J, Parfitt G D. Chemistry of Interfaces. Ellis Horwood Ltd. Onichester , 1981
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[6] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[7] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[8] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[9] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[10] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[11] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[12] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[13] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[14] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[15] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed