Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (2) : 156-161    https://doi.org/10.1007/s11783-010-0295-x
RESEARCH ARTICLE
Characterization and performance of V2O5/CeO2 for NH3-SCR of NO at low temperatures
Caiting LI(), Qun LI, Pei LU, Huafei CUI, Guangming ZENG
Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
 Download: PDF(196 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of CeO2 supported V2O5 catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic reduction (SCR) of NO with ammonia (NH3). The effects of O2 and SO2 on catalytic activity were also studied. The catalysts were characterized by specific surface areas (SBET) and X–ray diffraction (XRD) methods. The experimental results showed that NO conversion changed significantly with the different V2O5 loading and calcination temperature. With the V2O5 loading increasing from 0 to 10 wt%, NO conversion increased significantly, but decreased at higher loading. The optimum calcination temperature was 400°C. The best catalyst yielded above 80% NO conversion in the reaction temperature range of 160°C–300°C. The formation of CeVO4 on the surface of catalysts caused the decrease of redox ability.

Keywords V2O5/CeO2 catalysts      NH3-SCR (selective catalytic reduction)      the incipient impregnation      low temperatures     
Corresponding Author(s): LI Caiting,Email:ctli@hnu.cn   
Issue Date: 01 April 2012
 Cite this article:   
Caiting LI,Qun LI,Pei LU, et al. Characterization and performance of V2O5/CeO2 for NH3-SCR of NO at low temperatures[J]. Front Envir Sci Eng, 2012, 6(2): 156-161.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0295-x
https://academic.hep.com.cn/fese/EN/Y2012/V6/I2/156
catalystsSBET /(m2·g-1)
CeO283
V2O515
1%V2O5/CeO2(400°C)80
5%V2O5/CeO2(400°C)72
10%V2O5/CeO2(400°C)56
15%V2O5/CeO2(400°C)53
20%V2O5/CeO2(400°C)48
5%V2O5/CeO2(500°C)60
5%V2O5/CeO2(600°C)43
Tab.1  Specific surface area of the catalysts
Fig.1  XRD patterns of the VO/CeO (400°C) catalyst with various VO contents
(a) Pure CeO; (b) 1% VO/CeO; (c) 5% VO/CeO; (d) 10% VO/CeO; (e) 15% VO/CeO; (f) 20% VO/CeO.
Fig.2  XRD patterns of the 5%VO/CeO catalyst at different calcination temperatures:
(a) 5%VO/CeO (400°C); (b) 5%VO/CeO (500°C); (c) 5%VO/CeO (600°C)
Fig.3  NO conversion of the VO/CeO catalyst with various VO loadings calcined at 400°C.Reaction conditions: 500 mg catalyst, total flow 100 mL·min, NO 1×10, NH 1.08×10, O 5 vol%, N balance
Fig.4  NO conversion of the 5%VO/CeO catalyst calcined at 400°C, 500°C, 600°C.
Reaction conditions: 500 mg catalyst, NO 1×10, NH1.08×10, O 5 vol%, N balance, total flow 100 mL·min
Fig.5  NO conversion of the 5%VO/CeO catalyst under different reaction conditions: in the presence of O and in the absence of O. Reaction conditions: 500 mg catalyst, NO 1×10, NH 1.08×10, O 0-5 vol%, N balance, total flow 100 mL·min
Fig.6  NO conversion on 5%VO/CeO catalyst under different reaction conditions: in the presence of SO and in the absence of SO. Reaction conditions: 500 mg catalyst, NO 1×10, NH 1.08×10, SO 0-3vol%, N balance, total flow 100 mL·min
1 Bosch H, Janssen F. Formation and Control of Nitrogen Oxides. Catalysis Today , 1988, 2(4): 369–379
doi: 10.1016/0920-5861(88)80002-6
2 Teng H, Tu Y T, Lai Y C, Lin C C. Reduction of NO with NH3 over carbon catalysts The effects of treating carbon with H2SO4 and HNO3. Carbon , 2001, 39(4): 575–582
doi: 10.1016/S0008-6223(00)00171-8
3 Severino F, Brito J L, Laine J, Fierro J L G, L?pez A A. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4 and CuCr2O4 Spinel Type Catalysts. Journal of Catalysis , 1998, 177(1): 82–95
doi: 10.1006/jcat.1998.2094
4 Wood S C. Select the Right NOx Control Technology. Chemical Engineering Progress , 1994, 90: 32–38
5 Ha H P, Jung S H, Lee J Y, Hong S H. Study on SCR De NO, mechanism through in situ electrical conductivity measurements on V2O5-WO3/TiO2 catalysts. Rare Metals , 2006, 25(9): 77–83
6 Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweiler W. Effect of oxygen concentration on the NOx reduction with ammonia over V2O5-WO3/TiO2 catalyst. Catalysis Today , 2006, 113(3-4): 208–214
doi: 10.1016/j.cattod.2005.11.067
7 Kijlstra W, Brands D, Smit H, Poels E, Bliek A. Mechanism of the Selective Catalytic Reduction of NO with NH3 over MnOx/Al2O3 II, Reactivity of Adsorbed NH3 and NO Complexes. Journal of Catalysis , 1997, 171(1): 219–230
doi: 10.1006/jcat.1997.1789
8 Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. Adsorption, Activation, and Oxidation of Ammonia over SCR Catalysts. Journal of Catalysis , 1995, 157(2): 523–535
doi: 10.1006/jcat.1995.1316
9 Kasaoka S, Sasaoka E, Iwasaki H. Vanadium Oxides(V2Ox) Catalysts for Dry-Type and Simultaneous Removal of Sulfur Oxides and Nitrogen Oxides with Ammonia at Low Temperature. Chemical Society of Japan , 1989, 62(4): 1226–1232
doi: 10.1246/bcsj.62.1226
10 W?llner A, Lange F, Schmelz H, Kn?zinger H. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Applied Catalysis A, General , 1993, 94(2): 181–203
doi: 10.1016/0926-860X(93)85007-C
11 Kijlstra W, Daamen J, Graaf J, Linden B, Poels E, Bliek A. Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Applied Catalysis B: Environmental , 1996, 7(3-4): 337–357
doi: 10.1016/0926-3373(95)00052-6
12 Zhu Z P, Liu Z Y, Niu H X, Liu S J. Promoting Effect of SO2 on Activated Carbon-Supported Vanadia Catalyst for NO Reduction by NH3 at Low Temperature. Journal of Catalysis , 1999, 187(1): 245–248
doi: 10.1006/jcat.1999.2605
13 Richter M, Trunschke A, Bentrup U, Brzezinka K W, Schreier E, Schneider M, Pohl M M, Fricke R. Selection Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnOx/NaY Composite Catalysts. Journal of Catalysis , 2002, 206(1): 98–113
doi: 10.1006/jcat.2001.3468
14 Fabrizioli P, Bürgi T, Baiker A. Environmental Catalysis on Iron Oxide-Silica Aerogels: Selective Oxidation of NH3 and Reduction of NO by NH3. Journal of Catalysis , 2002, 206(1): 143–154
doi: 10.1006/jcat.2001.3475
15 Qi G S, Yang T R. Characterization and FTIR Studies of MnOx-CeO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3. Journal of Physical Chemistry B , 2004, 108(40): 15738–15747
doi: 10.1021/jp048431h
16 Qi G S, Yang T R, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental , 2004, 51(2): 93–106
doi: 10.1016/j.apcatb.2004.01.023
17 Tikhomirov K, Kr?cher O, Elsener M, Wokaun A. MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot. Applied Catalysis B: Environmental , 2006, 64(1-2): 72–78
doi: 10.1016/j.apcatb.2005.11.003
18 Machida M, Uto M, Kurogi D, Kijima T. MnOx-CeO2 Binary Oxides for Catalytic NOx Sorption at Low Temperatures. Sorptive Removal of NOx. Chemistry of Materials , 2000, 12(10): 3158–3164
doi: 10.1021/cm000207r
19 Li J H, Chen J J, Ke R, Luo C K, Hao J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts. Catalysis Communications , 2007, 8(12): 1896–1900
doi: 10.1016/j.catcom.2007.03.007
20 Tang X L, Hao J M, Xu W G, Li J H. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catalysis Communications , 2007, 8(3): 329–334
doi: 10.1016/j.catcom.2006.06.025
21 Cousin R, Capelle S, Abi-Aad E, Courcot D, Abouka?s A. Copper-Vanadium-Cerium oxide catalysts for carbon blank oxidation. Applied Catalysis B: Environmental , 2007, 70(1-4): 247–253
doi: 10.1016/j.apcatb.2006.01.019
22 Ka?par J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today , 1999, 50(2): 285–298
doi: 10.1016/S0920-5861(98)00510-0
23 Trovarelli A. Catalytic properties of Ceria and CeO2-containing materials. Catalysis Reviews. Science and Engineering , 1996, 38(4): 439–520
doi: 10.1080/01614949608006464
24 Gu X D, Ge J Z, Zhang H L, Auroux A, Shen J Y. Structureal, redox and acid-base properties of V2O5/CeO2 catalysts. Thermochimica Acta , 2006, 451(1-2): 84–93
doi: 10.1016/j.tca.2006.09.007
25 Chen L, Li J H, Ge M F. Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3. Journal of Physical Chemistry C , 2009, 113(50): 21177–21184
doi: 10.1021/jp907109e
26 Chen L, Li J H, Ge M F, Zhu R H. Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Catalysis Today , 2010, 153(3-4): 77–83
doi: 10.1016/j.cattod.2010.01.062
27 Daniell W, Ponchel A, Kuba S, Anderle F, Weingand T, Gregory D H, Kn?zinger H. Characterization and Catalytic Behavior of VOx-CeO2 Catalysts for the Oxidative Dehydrogenation of Propane. Topics in Catalysis , 2002, 20(1-4): 64–74
28 Xu W Q, Yu Y B, Zhang C B, He H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catalysis Communications , 2008, 9(6): 1453–1457
doi: 10.1016/j.catcom.2007.12.012
29 Zhu Z P, Liu Z Y, Niu H X, Liu S J, Hu T D, Liu T, Xie Y N. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst. Journal of Catalysis , 2001, 197(1): 6–16
doi: 10.1006/jcat.2000.3052
30 Zhu Z P, Liu Z Y, Liu S J, Niu H X. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures. Applied Catalysis B: Environmental , 1999, 23(4): L229-L233
doi: 10.1016/S0926-3373(99)00085-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed