Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (3) : 304-312    https://doi.org/10.1007/s11783-010-0297-8
RESEARCH ARTICLE
Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity
Shenghung WANG1, Kuohua WANG2(), Jihmirn JEHNG1, Lichen LIU1
1. Department of Chemical Engineering, Chung Hsing University, Taichung 402, China; 2. Department of Labor Relations, Chinese Culture University, Taipei 111, China
 Download: PDF(176 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Titanium dioxide is coated on the surface of MCM-41 wafer through the plasma enhanced chemical vapor deposition (PECVD) method using titanium isopropoxide (TTIP) as a precursor. Annealing temperature is a key factor affecting crystal phase of titanium dioxide. It will transform an amorphous structure to a polycrystalline structure by increasing temperature. The optimum anatase phase of TiO2 which can acquire the best methanol conversion under UV-light irradiation is obtained under an annealing temperature of 700°C for 2 h, substrate temperature of 500°C, 70 mL·min-1 of oxygen flow rate, and 100 W of plasma power. In addition, the films are composed of an anatase-rutile mixed phase, and the ratio of anatase to rutile varies with substrate temperature and oxygen flow rate. The particle sizes of titanium dioxide are between 30.3 nm and 59.9 nm by the calculation of Scherrer equation. Under the reaction conditions of 116.8 mg·L-1 methanol, 2.9 mg·L-1 moisture, and 75°C of reaction temperature, the best conversion of methanol with UV-light is 48.2% by using the anatase-rutile (91.3/8.7) mixed phase TiO2 in a batch reactor for 60 min. While under fluorescent light irradiation, the best photoactivity appears by using the anatase-rutile (55.4/44.6) mixed phase TiO2 with a conversion of 40.0%.

Keywords photocatalyst      titanium dioxide      MCM-41      plasma enhanced chemical vapor deposition (PECVD)     
Corresponding Author(s): WANG Kuohua,Email:kuohuawang@yahoo.com.tw   
Issue Date: 01 June 2012
 Cite this article:   
Shenghung WANG,Kuohua WANG,Jihmirn JEHNG, et al. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity[J]. Front Envir Sci Eng, 2012, 6(3): 304-312.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0297-8
https://academic.hep.com.cn/fese/EN/Y2012/V6/I3/304
preparation parameterpreparation condition
substrate temperature200°C-500°C
TTIP vapor flow rate50 mL·min-1
oxygen flow rate50-100 mL·min-1
nitrogen flow rate0-50 mL·min-1
plasma power0-150 W
reaction pressure1.33 Pa
depositing time60 min
annealing temperature0°C-800°C
annealing time0-12 h
Tab.1  Preparation parameters of TiO/MCM-41 catalyst
Fig.1  Batch reactor for photocatalytic activity test
Fig.2  XRD spectra of MCM-41 films at different reaction temperatures. (a) 40°C, (b) 50°C, (c) 60°C, (d) 70°C, (e) 80°C
Fig.3  XRD spectra of TiO/MCM-41 films at different annealing times. (2: 1.5°-7.0°, annealing temperature: 700°C, substrate temperature: 500°C, O flow rate: 70 mL·min, power: 100 W); (a) MCM-41, (b) non-annealing, (c) 2h, (d) 4h, (e) 8h, (f) 12h
Fig.4  XRD spectra of TiO/MCM-41 films at different annealing times. (2: 20°-60°, annealing temperature: 700°C, substrate temperature: 500°C, O flow rate: 70 mL·min, power: 100 W); (a) non-annealing, (b) 2h, (c) 4h, (d) 8h, (e) 12h
Fig.5  XRD spectra of TiO/MCM-41 films at different annealing temperatures. (annealing time: 2 h, substrate temperature: 500°C, O flow rate: 70 mL·min, power: 100 W, A: anatase, R: rutile); (a) non-annealing, (b) 600°C, (c) 700°C, (d) 800°C
Fig.6  XRD spectra of TiO/MCM-41 films at different substrate temperatures. (annealing time: 2 h, annealing temperature: 700°C, O flow rate: 70 mL·min, power: 100 W, A: anatase, R: rutile); (a) 200°C, (b) 300°C, (c) 400°C, (d) 500°C
Fig.7  XRD spectra of TiO/MCM-41 films at different oxygen flow rates. (annealing time: 2 h, annealing temperature: 700°C, substrate temperature: 500°C, power: 100 W, A: anatase, R: rutile); (a) 50 mL·min, (b) 70 mL·min, (c) 100 mL·min
Fig.8  XRD spectra of TiO/MCM-41 films at different plasma powers. (annealing time: 2 h, annealing temperature: 700°C ,substrate temperature: 500°C, O: 70 mL·min, A: anatase, R: rutile); (a) 0 W, (b) 50 W. (c) 100 W, (d) 150 W
preparation parametersanatase/%rutile/%
substrate temperature/°C
20032.767.3
30020.279.8
40063.436.6
50091.38.7
oxygen flow rate/(mL·min-1)
5055.444.6
7091.38.7
Tab.2  Ratio of anatase-rutile mixture at different substrate temperatures and oxygen flow rates
Fig.9  ESCA analysis of TiO/MCM-41 film. (annealing time: 2 h, annealing temperature: 700°C, substrate temperature: 300°C, O: 70 mL·min, power: 100 W)
Fig.10  XPS spectra of TiO/MCM-41 films at different oxygen flow rates. (annealing time: 2 h, annealing temperature: 700°C, substrate temperature: 500°C, power: 100 W); (a) Ti(2p) and (b) O(1s)
oxygen flow rate/(mL·min-1)substrate temperature/°Cannealing temperature/°Cannealing time/hplasma power/Wmethanol conversion/%
50500700210018.9
70200700210018.7
70300700210016.1
70400700210026.0
70500Non01008.8
70500600210027.3
70500700207.2
7050070025032.5
70500700210048.2
70500700215044.4
70500700410037.7
70500700810035.8
705007001210031.9
70500800210011.7
10050070021008.4
Tab.3  Conversion of methanol with 365 nm UV-light
oxygen flow rate/(mL·min-1)substrate temperature/°Cannealing temperature/°Cannealing time/hplasma power/Wmethanol conversion/%
50500700210040.0
70200700210029.3
70300700210024.1
70400700210032.2
70500Non01005.4
70500600210016.5
70500700202.8
7050070025017.6
70500700210022.5
70500700215020.8
70500700410019.1
70500700810018.1
705007001210017.9
7050080021007.1
10050070021004.6
Tab.4  Conversion of methanol with fluorescent light lamp
1 Euvananont C, Junin C, Inpor K, Limthongkul P, Thanachayanont C. TiO2 optical coating layers for self-cleaning applications. Ceramics International , 2008, 34(4): 1067–1071
doi: 10.1016/j.ceramint.2007.09.043
2 Dholam R, Patel N, Adami M, Miotello A. Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting.International Journal of Hydrogen Energy , 2008, 33(23): 6896–6903
doi: 10.1016/j.ijhydene.2008.08.061
3 Ghezzar M R, Abdelmalek F, Belhadj M, Benderdouche N, Addou A. Enhancement of the bleaching and degradation of textile wastewaters by Gliding arc discharge plasma in the presence of TiO2 catalyst. Journal of Hazardous Materials , 2009, 164(2-3): 1266–1274
doi: 10.1016/j.jhazmat.2008.09.060 pmid:18995959
4 Suhail M H, Rao G M, Mohan S. DC reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films. Journal of Applied Physics , 1992, 71(3): 1421–1427
doi: 10.1063/1.351264
5 Takahashi Y, Suzuki H, Nasu M. Rutile growth at the surface of TiO2 films deposited by vapour-phase decomposition of isopropyl titanate. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases , 1985, 81(12): 3117–3125
6 Lee W G, Woo S I, Kim J C, Choi S H, Oh K H. Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition. Thin Solid Films , 1994, 237(1-2): 105–111
7 Lee Y H. A role of energetic ions in RF-biased PECVD of TiO2. Vacuum , 1999, 51(4): 503509
8 Battiston G A, Gerbasi R, Gregori A, Porchia M, Cattarin S, Rizzi G A. PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition. Thin Solid Films , 2000, 371(1-2): 126–131
doi: 10.1016/S0040-6090(00)00998-6
9 Hsiao L C. Develop a extraction method of novel materials which are applied on Volatile Organic Compounds in air. Dissertation for the Master Degree . Taoyuan: Central University, 2005 (in Chinese)
10 Sadjadi M S, Farhadyar N, Zare K. Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity. Superlattices and Microstructures , 2009, 46(1-2): 266–271
doi: 10.1016/j.spmi.2008.12.024
11 Signoretto M, Ghedini E, Trevisan V, Bianchi C L, Ongaro M, Cruciani G. TiO2-MCM-41 for the photocatalytic abatement of NOx in gas phase. Applied Catalysis B:Environmental , 2010, 95(1-2): 130–136
12 Grill A. Cold Plasma in Materials Fabrication. 1st ed. Wiley-IEEE Press , 1994, 1–23
13 Chou H P. Structure and photocatalysis of undoped and nitrogen-doped titanium oxide films by reactive sputtering. Dissertation for the Master Degree . Taitung: Dong Hwa University, 2004 (in Chinese)
14 Mwabora J M, Lindgren T, Avenda?o E, Jaramillo T F, Lu J, Lindquist S E, Granqvist C G. Structure, composition, and morphology of photoelectrochemically active TiO2-xNx thin films deposited by reactive DC magnetron sputtering. Journal of Physical Chemistry B , 2004, 108(52): 20193–20198
doi: 10.1021/jp0368987
15 Zhang Q H, Gao L, Guo J K. Effects of sulfate ions and hydrolytic temperature on the properties of TiCl4-derived nanostructured TiO2. Journal of Inorganic Materials , 2000, 15(6): 992–998 (in Chinese)
16 Liqiang J, Xiaojun S, Weimin C, Zili X, Yaoguo D, Honggang F. The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity. Journal of Physics and Chemistry of Solids , 2003, 64(4): 615–623
doi: 10.1016/S0022-3697(02)00362-1
17 McCurdy P R, Sturgess L J, Kohli S, Fisher E R. Investigation of the PECVD TiO2-Si(100) interface. Applied Surface Science , 2004, 233(1-4): 69–79
doi: 10.1016/j.apsusc.2004.03.009
18 Herman G S, Dohnalek Z, Ruzycki N, Diebold U. Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). Journal of Physical Chemistry B , 2003, 107(12): 2788–2795
doi: 10.1021/jp0275544
19 Bickley R I, Gonzalez-Carreno T, Lees J S, Palmisano L, Tilley R J D. A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry , 1991, 92(1): 178–190
doi: 10.1016/0022-4596(91)90255-G
20 Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A Chemistry , 1995, 85(3): 247–255
doi: 10.1016/1010-6030(94)03906-B
21 Yan Q Z, Su X T, Zhou Y P, Ge C C. Controlled synthesis of TiO2 nanometer powders by sol-gel auto-igniting process and their structural property. Acta Physico-Chimica Sinica , 2005, 21(1): 57–62 (in Chinese)
22 Lee K B. Photocatalytic degradation of methanol gas with TiO2 thin films by plasma enhanced CVD. Dissertation for the Master Degree. Taichung: Chung Hsing University , 2006 (in Chinese)
[1] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[2] Jing Gu, Hongtao Yu, Xie Quan, Shuo Chen, Junfeng Niu. Utilizing transparent and conductive SnO2 as electron mediator to enhance the photocatalytic performance of Z-scheme Si-SnO2-TiOx[J]. Front. Environ. Sci. Eng., 2020, 14(4): 72-.
[3] Xuejiao Wang, Xiang Feng, Jing Shang. Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or supporting electrolyte[J]. Front. Environ. Sci. Eng., 2018, 12(6): 11-.
[4] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[5] Guiying RAO, Kristen S. BRASTAD, Qianyi ZHANG, Rebecca ROBINSON, Zhen HE, Ying LI. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11-.
[6] Zhijian LI, Shubo DENG, Xueying ZHANG, Wei ZHOU, Jun HUANG, Gang YU. Removal of fluoride from water using titanium-based adsorbents[J]. Front Envir Sci Eng Chin, 2010, 4(4): 414-420.
[7] ZHAO Jinglian, WANG Xinping, ZHAO Liang. Preparation and characterization of ZnO/ZnS hybrid photocatalysts via microwave-hydrothermal method[J]. Front.Environ.Sci.Eng., 2008, 2(4): 415-420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed