Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (4) : 497-504    https://doi.org/10.1007/s11783-011-0256-z
RESEARCH ARTICLE
Low-temperature CO oxidation over Au-doped 13X-type zeolite catalysts: preparation and catalytic activity
Qing YE(), Donghui LI, Jun ZHAO, Jiansheng ZHAO, Tianfang KANG, Shuiyuan CHENG
Department of Environmental Science, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
 Download: PDF(486 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Au-supported 13X-type zeolite (Au/13X) was synthesized using a common deposition–precipitation (DP) method with a solution of sodium carbonate as a precipitate agent. Further testing was conducted to test for catalytic oxidation of CO. A study was conducted on the effects of different preparation conditions (i.e., chloroauric acid concentration, solution temperature, pH of solution, and calcinations temperature) on Au/13X for CO oxidation. In respect to the catalytic activity, the relationship between different the preparation conditions and gold particles in 13X zeolite was analyzed using X-ray diffraction, TEM and XPS. The activity of Au/13X catalysts in CO oxidation was dependent on the chloroauric acid concentration. From XRD results, a higher chloroauric acid concentration induced larger gold nanoparticles, which resulted in lower catalytic activity. Results revealed that higher temperatures induced higher Au loading, homogeneous deposit, and smaller gold clusters on the support of 13X, resulting in higher CO activity. Furthermore, a pH of 5 or 6 generated greater amounts of Au loading and smaller Au particles on 13X than at a pH of 8 or 9. This may be a result of an effective exchange between Au(OH)2Cl2- and Au(OH)3Cl- on specific surface sites of zeolite under the pH’s 5 and 6. The sample calcined at 300°C showed the highest activity, which may be due to the sample’s calcined at 200°C inability to decompose completely to metallic gold while the sample calcined at 400°C had larger particles of gold deposited on the support. It can be concluded from this study that Au/13X prepared from a gold solution with an initial chloroauric acid solution concentration of 1.5 × 10-3 mol·L-1 gold solution pH of 6, solution temperature of around 90°C, and a calcination temperature of 300°C provides optimum catalytic activity for CO oxidation.

Keywords 13X-type zeolite      CO oxidation      gold solution      pH      calcination temperature     
Corresponding Author(s): YE Qing,Email:yeqing@bjut.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Qing YE,Donghui LI,Jun ZHAO, et al. Low-temperature CO oxidation over Au-doped 13X-type zeolite catalysts: preparation and catalytic activity[J]. Front Envir Sci Eng Chin, 2011, 5(4): 497-504.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0256-z
https://academic.hep.com.cn/fese/EN/Y2011/V5/I4/497
samplechloroauric acid concentration /(mol·L-1)solution temperature/°CpHmetal loading/wt%DAu/nmCO conversion
T50%/°CT100%/°C
Au/13X-10.5 × 10-39060.3-300>400
Au/13X-21.5 × 10-39062.2-110125
Au/13X-32.5 × 10-39064.322.7150175
Au/13X-43.5 × 10-39066.025.9190225
Au/13X-51.5 × 10-32561.220.9170200
Au/13X-61.5 × 10-35061.5-150178
Au/13X-71.5 × 10-38062.1-125134
Au/13X-81.5 × 10-39052.4-120130
Au/13X-91.5 × 10-39081.39.2170215
Au/13X-101.5 × 10-39090.910.3200235
Tab.1  Effect of preparation conditions (chloroauric acid solution concentration, solution temperature and pH) on metal loading, average gold metal particle size, and CO oxidation activity on Au/13X
Fig.1  XRD patterns of Au/13X prepared in a solution at pH 6 and at 90°C with different chloroauric acid concentrations. (a) 13X; (b) 0.5×10 mol·L (Au/13X-1); (c) 1.5×10 mol·L (Au/13X-2); (d) 2.5×10 mol·L (Au/13X-3); (e) 3.5×10 mol·L (Au/13X-4)
Fig.2  XRD patterns of Au/13X prepared from a chloroauric acid solution of 1.5 × 10 mol·L, pH 6 and different solution temperatures at (a) 13X, (b) 90°C (Au/13X-2), (c) 80°C (Au/13X-7), (d) 50°C (Au/13X-6), and (e) 25°C (Au/13X-5)
Fig.3  TEM and HRTEM photographs of Au/13X catalysts prepared at different solution temperatures. The gold concentration for the preparation of Au/13X was 1.5×10 mol·Land pH 6: (a, b and c) = 25°C (Au/13X-5); (d, e and f) = 90°C (Au/13X-2)
Fig.4  XRD patterns of Au/13X prepared from a chloroauric acid solution of 1.5 × 10 mol.L, in a solution at 90°C, pH 6, at (a) 13X, (b) pH= 6 (Au/13X-2), (c) pH= 5 (Au/13X-8), (d) pH= 8 (Au/13X-9), and (e) pH= 9 (Au/13X-10)
Fig.5  XPS spectra of Au/13X prepared from different solution pH. All of the gold solution concentrations were 1.5 × 10 mol·L and solution temperature 90°C (a) pH 9 (Au/13X-10); (b) pH 6 (Au/13X-2)
Fig.6  XRD patterns of Au/13X prepared at different calcination temperatures. (a) 13X; (b) Au/13X calcinations at 200°C; (c) Au/13X calcinations at 300°C; (d) Au/13X calcinations at 400°C
Fig.7  Catalytic activity of Au/13X catalysts at different calcination temperatures at 200°C (●), 300°C (?), 400°C (?)
Fig.8  Stability of Au/13X as a function of time on stream. The reaction was conducted at different temperatures with a space velocity of 12000 h
1 Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon-dioxde at a temperature far below 0-degrees-C. Chemistry Letters , 1987, 2(2): 405–408
doi: 10.1246/cl.1987.405
2 Menegazzo F, Manzoli M, Chiorino A, Boccuzzi F, Tabakova T, Signoretto M, Pinna F, Pernicone N. Quantitative determination of gold active sites by chemisorption and by infrared measurements of adsorbed CO. Journal of Catalysis , 2006, 237(2): 431–434
doi: 10.1016/j.jcat.2005.11.026
3 Kang Y M, Wan B Z. Gold and iron supported on Y-type zeolite for carbon monoxide oxidation. Catalysis Today , 1997, 35(4): 379–392
doi: 10.1016/S0920-5861(96)00215-5
4 Zanella R, Giorgio S, Shin C H, Henry C R, Louis C. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. Journal of Catalysis , 2004, 222(2): 357–367
doi: 10.1016/j.jcat.2003.11.005
5 Broussard L, Shoemaker D P. The Structures of Synthetic Molecular Sieves. Journal of the American Chemical Society , 1960, 82(5): 1041–1051
doi: 10.1021/ja01490a007
6 Kondarides D I, Verykios X E. Interaction of oxygen with supported Ag-Au alloy catalysts. Journal of Catalysis , 1996, 158(2): 363–337
doi: 10.1006/jcat.1996.0038
7 Kang Y M, Wan B Z. Preparation of gold in Y-type zeolite for carbon monoxide oxidation. Applied Catalysis A, General , 1995, 128(1): 53–60
doi: 10.1016/0926-860X(95)00076-3
8 Chang C K, Chen Y J, Yeh C T. Characterizations of alumina-supported gold with temperature- programmed reduction. Applied Catalysis A, General , 1998, 174(1-2): 13–23
doi: 10.1016/S0926-860X(98)00188-4
9 Schubert M M, Hackenberg S, van Veen A C, Muhler M, Plzak V, Behm R J. CO oxidation over supported gold catalysts-”inert” and “active” support materials and their role for the oxygen supply during reaction. Journal of Catalysis , 2001, 197(1): 113–122
doi: 10.1006/jcat.2000.3069
10 Chiang C W, Wang A Q, Mou C Y. CO oxidation catalyzed by gold nanoparticles confined in mesoporous aluminosilicate Al-SBA-15: Pretreatment methods. Catalysis Today , 2006, 117(1-3): 220–227
doi: 10.1016/j.cattod.2006.05.026
11 Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science , 1998, 281(5383): 1647–1650
doi: 10.1126/science.281.5383.1647 pmid:9733505
12 Pan P, Wood S A. Gold-chloride complexes in very acidic aqueous-solutions and at temperatures 25-300°C: a laser Raman-spectroscopic study. Geochimica et Cosmochimica Acta , 1991, 55(8): 3565–3571
doi: 10.1016/0016-7037(91)90112-I
13 Baes C F, Mesmer J R E. The Hydrolysis of Cations.New York: Wiley, 1976
14 Murphy P J, LaGrange M S. Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: A re-evaluation of the effects of pH and chloride concentration. Geochimica et Cosmochimica Acta , 1998, 62(21-22): 3515–3526
doi: 10.1016/S0016-7037(98)00246-4
15 Lin J N, Chen J H, Hsiao C Y, Kang Y M, Wan B Z. Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation. Applied Catalysis B: Environmental , 2002, 36(1): 19–29
doi: 10.1016/S0926-3373(01)00276-4
16 Hoflund G B, Gardner S D, Schryer D R, Upchurch B T, Kielin E J. Au/mnox catalytic performance-characteristics for low-temperature carbon-monoxide oxidation. Applied Catalysis B: Environmental , 1995, 6(2): 117–126
doi: 10.1016/0926-3373(95)00010-0
17 Cunningham D, Tsubota S, Kamijo N, Haruta M. Preparation and catalytic behavior of subnanometer gold deposited on TiO2 by vacuum calcination. Research on Chemical Intermediates , 1993, 19(1): 1–13
doi: 10.1163/156856793X00497
18 Okumura M, Tanaka K, Ueda A, Haruta M. The reactivities of dimethylgold(III)beta-diketone on the surface of TiO2 - A novel preparation method for Au catalysts. Solid State Ionics , 1997, 95(1-2): 143–149
doi: 10.1016/S0167-2738(96)00574-7
19 Yuan Y Z, Asakura K, Wan H L, Tsai K, Iwasawa Y. Preparation of supported gold catalysts from gold complexes and their catalytic activities for CO oxidation. Catalysis Letters , 1996, 42(1-2): 15–20
doi: 10.1007/BF00814461
20 Park E D, Lee J S. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. Journal of Catalysis , 1999, 186(1): 1–11
doi: 10.1006/jcat.1999.2531
21 21. Zhen M, Steve H O, Sheng D. Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives, Journal of Molecular Catalysis A: Chemical, 2007, 273(1-2) :186–197
doi:10.1016/j.molcata.2007.04.007
22 Boccuzzi F, 0. Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M. Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. Journal of Catalysis , 2001, 202(2): 256–267
doi: 10.1006/jcat.2001.3290
24 Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. Low-temperature oxidation of CO over gold supported on TiO2, alpha-Fe2O3, and Co3O4. Journal of Catalysis , 1993, 144(1): 175–192
doi: 10.1006/jcat.1993.1322
[1] Shiguan Yang, Xinrui Fan, Ji Liu, Wei Zhao, Bin Hu, Qiang Lu. Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study[J]. Front. Environ. Sci. Eng., 2021, 15(6): 120-.
[2] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[3] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[4] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[5] Shan Xue, Shaobin Sun, Weihua Qing, Taobo Huang, Wen Liu, Changqing Liu, Hong Yao, Wen Zhang. Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 95-.
[6] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[7] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[8] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[9] Xinzheng Li, Zhiming Li, Zhihui Xing, Zhimin Song, Bei Ye, Zhengming Wang, Qianyuan Wu. UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide[J]. Front. Environ. Sci. Eng., 2021, 15(5): 85-.
[10] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[11] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[12] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[13] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[14] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[15] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed