Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    0, Vol. Issue () : 111-118    https://doi.org/10.1007/s11783-011-0285-7
RESEARCH ARTICLE
Search for a natural scientific measure of economy
John E COULTER()
Xiwangzhuang, Shuangqing Rd, Haidian, Beijing 100084, China
 Download: PDF(164 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Through human history, wealth has been measured in grain, gold, and, now, dollars. Though counterfeiting of coins and notes goes back a long way, it is only with electronic financial accounting in a global economy tainted by toxic loans and imaginary funds that there is an urgency to search for a realistic objective way to monitor and regulate what we are doing to our Earth and ourselves. Various schemes using analysis of utility functions, oil equivalents, entropy, energy, and other units have been tried and, while helping to understand some basic processes and flows, have always been swamped by the machinations of financiers and the attention big sums of money attract. Now, the concept of exergy, pioneered in Eastern Europe in the 1950s, is being researched, developed, and applied, especially in China, driven by the desperation to measure the reality beyond the twin specters of global financial and environmental crises. A rough inventory of the matter in the biosphere at the coordinate details of an angstrom and an appreciation of how humans harness and manipulate electromagnetic forces can be enlightening as to what is and is not sustainable. Without that understanding, any financial estimate and proposed stimulus packages or IMF reform will be wildly wrong and may even be headed in the wrong direction.

Keywords climate change      financial crisis      energy      exergy      environment     
Corresponding Author(s): COULTER John E,Email:john@coulterexergy.com   
Issue Date: 05 March 2011
 Cite this article:   
John E COULTER. Search for a natural scientific measure of economy[J]. Front Envir Sci Eng Chin, 0, (): 111-118.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0285-7
https://academic.hep.com.cn/fese/EN/Y0/V/I/111
1 Sraffa P. Production of Commodities by Means of Commodities.London: Cambridge University Press, 1960
2 Friedman D. Hidden Order: The Economics of Everyday Life.Canada: Harper Collins, 1996
3 Georgescu-Roegen N. The Entropy Law and the Economic Process.Massachusetts: Harvard University Press, 1971
4 Rifkin J. Entropy: A New World Order.New York: Viking, 1980
5 Faber M, Niemes H, Stephen G. Entropy, Environment and Resources. (translation from German by Pellenahr, I.).Berlin: Springer-Verlag, 1987
6 Odum H T. Environment, Power and Society.New York: Wiley Interscience, 1970
7 Szargut J, Morris D, Stewart F. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. Monograph. 1988
8 Szargut J. Anthropegenic and natural exergy losses (exergy balance of the Earth’s surface and atmosphere). Energy , 2003, 28: 1047-1054
doi: 10.1016/S0360-5442(03)00089-6
9 Szargut J. Exergy Method: Technical and Ecological Applications.Southhampton: WIT Press, 2005
10 Ranz-Villarino L, Valero A, Cebollero M. Applications of Szargut’s methodology to an exergetic account of Earth’s mineral capital. Paper delivered at Seminar on Contemporary Problems in Thermal Engineering, Silesia, Poland, 1998
11 Baumgartener S, Faber M, Schiller J. Joint Production and Responsibility in Ecological Economics.Cheltenham: Edward Egar Publishing Limited, 2006
12 Chen G Q, Chen B. Resource Analysis of the Chinese society 1980-2002 based on exergy. Energy Policy , 2007, 35: 2038-2050
doi: 10.1016/j.enpol.2006.06.009
13 Chen G Q. Exergy consumption of the earth. Ecological Modelling , 2005, 184: 363-380
doi: 10.1016/j.ecolmodel.2004.10.015
14 Chen B, Chen G Q. Modified ecological footprint accounting and analysis based on embodied exergy. Ecological Economics , 2007, 61: 355-376
doi: 10.1016/j.ecolecon.2006.03.009
15 Chen B, Chen G Q, Hao F H, Yang Z F. The water resources assessment based on resource exergy for the mainstream Yellow River. Communications in Nonlinear Science and Numerical Simulation , 2009, 14: 331-344
doi: 10.1016/j.cnsns.2007.05.036
16 Chen B, Chen G Q. Exergy Analysis for resource conversion of the Chinese Society 1993 under the material product system. Energy , 2006, 31: 1115-1150
doi: 10.1016/j.energy.2005.06.003
17 Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R V, Paruelo J, Raskin R G, Sutton P, van den Belt M. The value of the world’s ecosystem services and natural capital. Nature , 1997, 387(6630): 15 pmid:10.1038/387253a0" target="blank">
doi: 10.1038/387253a0
pmid:10.1038/387253a0" target="blank">
doi: 10.1038/387253a0
18 Bader R. Atoms in Molecules: A Quantum Theory.Oxford, UK: Oxford University Press, 1990
19 Exergy Flow Chart, Stanford University.http://gcep.stanford.edu/
20 Hermann W. Quantifying global exergy resources. Energy , 2006, 31: 1685-1702
doi: 10.1016/j.energy.2005.09.006
21 Cornelissen R. Thermodynamics and sustainable development: The use of exergy analysis and the reduction of irreversibility. Doctoral dissertation, University of Twente , 1997
22 Boulding K. The Economics of the Coming Spaceship Earth, paper presented Sixth Resources for the Future Forum on Environmental Quality in a Growing Economy in Washington, D.C. 1966
23 Ricardo D. On the Priciples of Political Economy and Taxation. Dent, London , 1969 (first published 1817)
24 King F. Farmers for Forty Centuries.New York: Courier Dover Publications, first published 1911
25 Pivovarov S. Letter to the editor: Surface structure and site density of the oxide-solution interface. Jounal of Colloid and Interface Science , 1997, 196: 321-323
26 Atkins P, Jones L. Chemistry: Molecules, Matter and Change.4th ed. New York: Freeman, 2002, 593
[1] Yao Wang, Alejandro Ruiz-Acevedo, Eemaan Rameez, Vijaya Raghavan, Abid Hussain, Xunchang Fei. Toward sustainable waste management in small islands developing states: integrated waste-to-energy solutions in Maldives context[J]. Front. Environ. Sci. Eng., 2024, 18(2): 24-.
[2] Timing Jiang, Xiang Wu, Shushan Yuan, Changfei Lai, Shijie Bian, Wenbo Yu, Sha Liang, Jingping Hu, Liang Huang, Huabo Duan, Yafei Shi, Jiakuan Yang. A potential threat from biodegradable microplastics: mechanism of cadmium adsorption and desorption in the simulated gastrointestinal environment[J]. Front. Environ. Sci. Eng., 2024, 18(2): 19-.
[3] Zizhen Ma, Jingkun Jiang, Lei Duan, Jianguo Deng, Fuyuan Xu, Zehui Li, Linhua Jiang, Ning Duan. Synergistic promotion of particulate matter reduction and production performance via adjusting electrochemical reactions in the zinc electrolysis industry[J]. Front. Environ. Sci. Eng., 2024, 18(1): 2-.
[4] Sajjad Haider, Rab Nawaz, Muzammil Anjum, Tahir Haneef, Vipin Kumar Oad, Salah Uddinkhan, Rawaiz Khan, Muhammad Aqif. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 111-.
[5] Qijun Zhang, Jiayuan Liu, Ning Wei, Congbo Song, Jianfei Peng, Lin Wu, Hongjun Mao. Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer test case at typical road environment[J]. Front. Environ. Sci. Eng., 2023, 17(5): 62-.
[6] Bin Wang, Liping Heng, Qian Sui, Zheng Peng, Xuezhi Xiao, Minghui Zheng, Jianxin Hu, Heidelore Fiedler, Damià Barceló, Gang Yu. Insight of chemical environmental risk and its management from the vinyl chloride accident[J]. Front. Environ. Sci. Eng., 2023, 17(4): 52-.
[7] Haojun Lei, Kaisheng Yao, Bin Yang, Lingtian Xie, Guangguo Ying. Occurrence, spatial and seasonal variation, and environmental risk of pharmaceutically active compounds in the Pearl River basin, South China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 46-.
[8] Yinghui Mo, Liping Sun, Lu Zhang, Jianxin Li, Jixiang Li, Xiuru Chu, Liang Wang. Electrocatalytic biofilm reactor for effective and energy-efficient azo dye degradation: the synergistic effect of MnOx/Ti flow-through anode and biofilm on the cathode[J]. Front. Environ. Sci. Eng., 2023, 17(4): 49-.
[9] Rui Liang, Chao Chen, Akash Kumar, Junyu Tao, Yan Kang, Dong Han, Xianjia Jiang, Pei Tang, Beibei Yan, Guanyi Chen. State-of-the-art applications of machine learning in the life cycle of solid waste management[J]. Front. Environ. Sci. Eng., 2023, 17(4): 44-.
[10] Weiyi Liu, Ting Pan, Hang Liu, Mengyun Jiang, Tingting Zhang. Adsorption behavior of imidacloprid pesticide on polar microplastics under environmental conditions: critical role of photo-aging[J]. Front. Environ. Sci. Eng., 2023, 17(4): 41-.
[11] Jaime A. Teixeira da Silva, Panagiotis Tsigaris. The relevance of James Lovelock’s research and philosophy to environmental science and academia[J]. Front. Environ. Sci. Eng., 2023, 17(3): 39-.
[12] Xi Lu, Dan Tong, Kebin He. China’s carbon neutrality: an extensive and profound systemic reform[J]. Front. Environ. Sci. Eng., 2023, 17(2): 14-.
[13] Sai Liang, Qiumeng Zhong. Reducing environmental impacts through socioeconomic transitions: critical review and prospects[J]. Front. Environ. Sci. Eng., 2023, 17(2): 24-.
[14] Samal Kaumbekova, Mehdi Amouei Torkmahalleh, Naoya Sakaguchi, Masakazu Umezawa, Dhawal Shah. Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein[J]. Front. Environ. Sci. Eng., 2023, 17(2): 15-.
[15] Mourin Jarin, Zeou Dou, Haiping Gao, Yongsheng Chen, Xing Xie. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water[J]. Front. Environ. Sci. Eng., 2023, 17(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed