Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (1) : 1-20    https://doi.org/10.1007/s11783-011-0301-y
FEATURE ARTICLE
Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities
Zhili HE1, Joy D. VAN NOSTRAND1, Ye DENG1, Jizhong ZHOU1,2,3()
1. Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; 2. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; 3. Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(351 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus, and metals, biodegradation of environmental contaminants, energy processing, and stress responses. GeoChips are considered as the most comprehensive FGAs. Experimentally established probe design criteria and a computational pipeline integrating sequence retrieval, probe design and verification, array construction, data analysis, and automatic update are used to develop the GeoChip technology. GeoChip has been systematically evaluated and demonstrated to be a powerful tool for rapid, specific, sensitive, and quantitative analysis of microbial communities in a high-throughput manner. Several generations of GeoChip have been developed and applied to investigate the functional diversity, composition, structure, function, and dynamics of a variety of microbial communities from different habitats, such as water, soil, marine, bioreactor, human microbiome, and extreme ecosystems. GeoChip is able to address fundamental questions related to global change, bioenergy, bioremediation, agricultural operation, land use, human health, environmental restoration, and ecological theories and to link the microbial community structure to environmental factors and ecosystem functioning.

Keywords functional gene arrays (FGAs)      GeoChip      microbial communities      functional diversity/composition/structure      environmental factor      ecosystem functioning     
Corresponding Author(s): ZHOU Jizhong,Email:jzhou@ou.edu   
Issue Date: 05 March 2011
 Cite this article:   
Joy D. VAN NOSTRAND,Ye DENG,Jizhong ZHOU, et al. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 1-20.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0301-y
https://academic.hep.com.cn/fese/EN/Y2011/V5/I1/1
Fig.1  Schematic presentation of GeoChip development and applications in analysis of microbial communities from a variety of habitats. A. GeoChip development; B. Target preparation; C. GeoChip data analysis. This figure is adapted from Fig. 1 by Zhou et al. []
Fig.2  
1 Torsvik V, ?vre?s L, Thingstad T F. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science , 2002, 296(5570): 1064–1066
doi: 10.1126/science.1071698 pmid:12004116
2 Roesch L F, Fulthorpe R R, Riva A, Casella G, Hadwin A K, Kent A D, Daroub S H, Camargo F A, Farmerie W G, Triplett E W. Pyrosequencing enumerates and contrasts soil microbial diversity.The ISME Journal , 2007, 1(4): 283–290
pmid:18043639
3 Schloss P D, Handelsman J. Toward a census of bacteria in soil. PLoS Computational Biology , 2006, 2(7): e92
doi: 10.1371/journal.pcbi.0020092 pmid:16848637
4 Hong S H, Bunge J, Jeon S O, Epstein S S. Predicting microbial species richness. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(1): 117–122
doi: 10.1073/pnas.0507245102 pmid:16368757
5 Curtis T P, Sloan W T, Scannell J W. Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences of the United States of America , 2002, 99(16): 10494–10499
doi: 10.1073/pnas.142680199 pmid:12097644
6 Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science , 2005, 309(5739): 1387–1390
doi: 10.1126/science.1112665 pmid:16123304
7 Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America , 1998, 95(12): 6578–6583
doi: 10.1073/pnas.95.12.6578 pmid:9618454
8 Dunbar J, Barns S M, Ticknor L O, Kuske C R. Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environmental Microbiology , 2002, 68(6): 3035–3045
doi: 10.1128/AEM.68.6.3035-3045.2002 pmid:12039765
9 Steward G F, Jenkins B D, Ward B B, Zehr J P. Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Applied and Environmental Microbiology , 2004, 70(3): 1455–1465
doi: 10.1128/AEM.70.3.1455-1465.2004 pmid:15006766
10 Jenkins B D, Steward G F, Short S M, Ward B B, Zehr J P. Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Applied and Environmental Microbiology , 2004, 70(3): 1767–1776
doi: 10.1128/AEM.70.3.1767-1776.2004 pmid:15006803
11 Warnecke P M, Stirzaker C, Melki J R, Millar D S, Paul C L, Clark S J. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Research , 1997, 25(21): 4422–4426
doi: 10.1093/nar/25.21.4422 pmid:9336479
12 Lueders T, Friedrich M W. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Applied and Environmental Microbiology , 2003, 69(1): 320–326
doi: 10.1128/AEM.69.1.320-326.2003 pmid:12514011
13 Suzuki M T, Giovannoni S J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology , 1996, 62(2): 625–630
pmid:8593063
14 Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science , 1995, 270(5235): 467–470
doi: 10.1126/science.270.5235.467 pmid:7569999
15 Guschin D Y, Mobarry B K, Proudnikov D, Stahl D A, Rittmann B E, Mirzabekov A D. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Applied and Environmental Microbiology , 1997, 63(6): 2397–2402
pmid:9172361
16 Zhou J, Kang S, Schadt C W, Garten C T Jr. Spatial scaling of functional gene diversity across various microbial taxa. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(22): 7768–7773
doi: 10.1073/pnas.0709016105 pmid:18509054
17 He Z, Deng Y, Van Nostrand J D, Tu Q, Xu M, Hemme C L, Li X, Wu L, Gentry T J, Yin Y, Liebich J, Hazen T C, Zhou J. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity.The ISME Journal , 2010, 4(9): 1167–1179
doi: 10.1038/ismej.2010.46 pmid:20428223
18 Wu L, Thompson D K, Li G, Hurt R A, Tiedje J M, Zhou J. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology , 2001, 67(12): 5780–5790
doi: 10.1128/AEM.67.12.5780-5790.2001 pmid:11722935
19 Rhee S K, Liu X, Wu L, Chong S C, Wan X, Zhou J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Applied and Environmental Microbiology , 2004, 70(7): 4303–4317
doi: 10.1128/AEM.70.7.4303-4317.2004 pmid:15240314
20 Gentry T J, Wickham G S, Schadt C W, He Z, Zhou J. Microarray applications in microbial ecology research. Microbial Ecology , 2006, 52(2): 159–175
doi: 10.1007/s00248-006-9072-6 pmid:16897303
21 He Z, Gentry T J, Schadt C W, Wu L, Liebich J, Chong S C, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes.The ISME Journal , 2007, 1(1): 67–77
doi: 10.1038/ismej.2007.2 pmid:18043615
22 Taroncher-Oldenburg G, Griner E M, Francis C A, Ward B B. Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Applied and Environmental Microbiology , 2003, 69(2): 1159–1171
doi: 10.1128/AEM.69.2.1159-1171.2003 pmid:12571043
23 Zhang L, Hurek T, Reinhold-Hurek B. A nifH-based oligonucleotide microarray for functional diagnostics of nitrogen-fixing microorganisms. Microbial Ecology , 2007, 53(3): 456–470
doi: 10.1007/s00248-006-9126-9 pmid:17186154
24 Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C. Microarray-based detection and typing of the Rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Applied and Environmental Microbiology , 2005, 71(12): 8042–8048
doi: 10.1128/AEM.71.12.8042-8048.2005 pmid:16332784
25 Bodrossy L, Stralis-Pavese N, Murrell J C, Radajewski S, Weilharter A, Sessitsch A. Development and validation of a diagnostic microbial microarray for methanotrophs. Environmental Microbiology , 2003, 5(7): 566–582
doi: 10.1046/j.1462-2920.2003.00450.x pmid:12823189
26 Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell J C, Bodrossy L. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environmental Microbiology , 2004, 6(4): 347–363
doi: 10.1111/j.1462-2920.2004.00582.x pmid:15008813
27 Bodrossy L, Stralis-Pavese N, Konrad-K?szler M, Weilharter A, Reichenauer T G, Sch?fer D, Sessitsch A. mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Applied and Environmental Microbiology , 2006, 72(2): 1672–1676
doi: 10.1128/AEM.72.2.1672-1676.2006 pmid:16461725
28 Miller S M, Tourlousse D M, Stedtfeld R D, Baushke S W, Herzog A B, Wick L M, Rouillard J M, Gulari E, Tiedje J M, Hashsham S A. In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Applied and Environmental Microbiology , 2008, 74(7): 2200–2209
doi: 10.1128/AEM.01962-07 pmid:18245235
29 Call D R, Bakko M K, Krug M J, Roberts M C. Identifying antimicrobial resistance genes with DNA microarrays. Antimicrobial Agents and Chemotherapy , 2003, 47(10): 3290–3295
doi: 10.1128/AAC.47.10.3290-3295.2003 pmid:14506043
30 Kosti? T, Weilharter A, Sessitsch A, Bodrossy L. High-sensitivity, polymerase chain reaction-free detection of microorganisms and their functional genes using 70-mer oligonucleotide diagnostic microarray. Analytical Biochemistry , 2005, 346(2): 333–335
doi: 10.1016/j.ab.2005.08.014 pmid:16169510
31 Cleven B E E, Palka-Santini M, Gielen J, Meembor S, Kr?nke M, Krut O. Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. Journal of Clinical Microbiology , 2006, 44(7): 2389–2397
doi: 10.1128/JCM.02291-05 pmid:16825354
32 Palka-Santini M, Cleven B E, Eichinger L, Kr?nke M, Krut O. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiology , 2009, 9(1): 1
doi: 10.1186/1471-2180-9-1 pmid:19121223
33 Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J, Dai Z, Liu X. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. Journal of Microbiological Methods , 2007, 70(1): 165–178
doi: 10.1016/j.mimet.2007.04.011 pmid:17543401
34 Tiquia S M, Wu L, Chong S C, Passovets S, Xu D, Xu Y, Zhou J. Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. BioTechniques , 2004, 36(4): 664–670, 672, 674-675
pmid:15088384
35 Liang Y, He Z, Wu L, Deng Y, Li G, Zhou J. Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities. Applied and Environmental Microbiology , 2010, 76(4): 1088–1094
doi: 10.1128/AEM.02749-09 pmid:20038701
36 Zhou J, He Z, Van Nostrand J D, Wu L, Deng Y. Applying GeoChip analysis to disparate microbial communities. Microbe , 2010, 5: 60–65
37 Wilson K H, Blitchington R B, Greene R C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. Journal of Clinical Microbiology , 1990, 28(9): 1942–1946
pmid:2095137
38 Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews , 1995, 59(1): 143–169
pmid:7535888
39 Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology , 1995, 61(3): 1104–1109
pmid:7793912
40 Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology , 1998, 180(18): 4765–4774
pmid:9733676
41 Brodie E L, Desantis T Z, Joyner D C, Baek S M, Larsen J T, Andersen G L, Hazen T C, Richardson P M, Herman D J, Tokunaga T K, Wan J M, Firestone M K. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Applied and Environmental Microbiology , 2006, 72(9): 6288–6298
doi: 10.1128/AEM.00246-06 pmid:16957256
42 Liesegang H, Lemke K, Siddiqui R A, Schlegel H G. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. Journal of Bacteriology , 1993, 175(3): 767–778
pmid:8380802
43 Grass G, Grosse C, Nies D H. Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. Journal of Bacteriology , 2000, 182(5): 1390–1398
doi: 10.1128/JB.182.5.1390-1398.2000 pmid:10671463
44 Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D. Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. Journal of Bacteriology , 2000, 182(5): 1399–1409
doi: 10.1128/JB.182.5.1399-1409.2000 pmid:10671464
45 Nies D H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews , 2003, 27(2-3): 313–339
doi: 10.1016/S0168-6445(03)00048-2 pmid:12829273
46 Saier M H Jr, Tam R, Reizer A, Reizer J. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Molecular Microbiology , 1994, 11(5): 841–847
doi: 10.1111/j.1365-2958.1994.tb00362.x pmid:8022262
47 Paulsen I T, Park J H, Choi P S, Saier M H Jr. A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiology Letters , 1997, 156(1): 1–8
doi: 10.1016/S0378-1097(97)00379-0 pmid:9368353
48 Eddy S R. Profile hidden Markov models. Bioinformatics (Oxford, England) , 1998, 14(9): 755–763
doi: 10.1093/bioinformatics/14.9.755 pmid:9918945
49 Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research , 1994, 22(22): 4673–4680
doi: 10.1093/nar/22.22.4673 pmid:7984417
50 Li X, He Z, Zhou J. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Research , 2005, 33(19): 6114–6123
doi: 10.1093/nar/gki914 pmid:16246912
51 Liebich J, Schadt C W, Chong S C, He Z, Rhee S K, Zhou J. Improvement of oligonucleotide probe design criteria for functional gene microarrays in environmental applications. Applied and Environmental Microbiology , 2006, 72(2): 1688–1691
doi: 10.1128/AEM.72.2.1688-1691.2006 pmid:16461729
52 He Z, Wu L, Li X, Fields M W, Zhou J. Empirical establishment of oligonucleotide probe design criteria. Applied and Environmental Microbiology , 2005, 71(7): 3753–3760
doi: 10.1128/AEM.71.7.3753-3760.2005 pmid:16000786
53 Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology , 2000, 7(1-2): 203–214
doi: 10.1089/10665270050081478 pmid:10890397
54 Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology , 1996, 62(2): 316–322
pmid:8593035
55 Hurt R A, Qiu X, Wu L, Roh Y, Palumbo A V, Tiedje J M, Zhou J. Simultaneous recovery of RNA and DNA from soils and sediments. Applied and Environmental Microbiology , 2001, 67(10): 4495–4503
doi: 10.1128/AEM.67.10.4495-4503.2001 pmid:11571148
56 Liang Y, Li G, Van Nostrand J D, He Z, Wu L, Deng Y, Zhang X, Zhou J. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiology Ecology , 2009, 70(2): 324–333
doi: 10.1111/j.1574-6941.2009.00774.x pmid:19780823
57 Ning J, Liebich J, K?stner M, Zhou J, Sch?ffer A, Burauel P. Different influences of DNA purity indices and quantity on PCR-based DGGE and functional gene microarray in soil microbial community study. Applied Microbiology and Biotechnology , 2009, 82(5): 983–993
doi: 10.1007/s00253-009-1912-0 pmid:19247649
58 Wu L, Liu X, Schadt C W, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Applied and Environmental Microbiology , 2006, 72(7): 4931–4941
doi: 10.1128/AEM.02738-05 pmid:16820490
59 Bürgmann H, Widmer F, Sigler W V, Zeyer J. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Applied and Environmental Microbiology , 2003, 69(4): 1928–1935
doi: 10.1128/AEM.69.4.1928-1935.2003 pmid:12676666
60 McGrath K C, Thomas-Hall S R, Cheng C T, Leo L, Alexa A, Schmidt S, Schenk P M. Isolation and analysis of mRNA from environmental microbial communities. Journal of Microbiological Methods , 2008, 75(2): 172–176
doi: 10.1016/j.mimet.2008.05.019 pmid:18582973
61 Gao H, Yang Z K, Gentry T J, Wu L, Schadt C W, Zhou J. Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Applied and Environmental Microbiology , 2007, 73(2): 563–571
doi: 10.1128/AEM.01771-06 pmid:17098911
62 He Z, Wu L, Fields M W, Zhou J. Use of microarrays with different probe sizes for monitoring gene expression. Applied and Environmental Microbiology , 2005, 71(9): 5154–5162
doi: 10.1128/AEM.71.9.5154-5162.2005 pmid:16151099
63 Van Nostrand J D, Wu W M, Wu L, Deng Y, Carley J, Carroll S, He Z, Gu B, Luo J, Criddle C S, Watson D B, Jardine P M, Marsh T L, Tiedje J M, Hazen T C, Zhou J. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environmental Microbiology , 2009, 11(10): 2611–2626
doi: 10.1111/j.1462-2920.2009.01986.x pmid:19624708
64 Waldron P J, Wu L, Van Nostrand J D, Schadt C W, He Z, Watson D B, Jardine P M, Palumbo A V, Hazen T C, Zhou J. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. Environmental Science & Technology , 2009, 43(10): 3529–3534
doi: 10.1021/es803423p pmid:19544850
65 Mason O U, Di Meo-Savoie C A, Van Nostrand J D, Zhou J, Fisk M R, Giovannoni S J. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts.The ISME Journal , 2009, 3(2): 231–242
doi: 10.1038/ismej.2008.92 pmid:18843298
66 He Z, Zhou J. Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis. Applied and Environmental Microbiology , 2008, 74(10): 2957–2966
doi: 10.1128/AEM.02536-07 pmid:18344333
67 He Z, Van Nostrand J D, Wu L, Zhou J. Development and application of functional gene arrays for microbial community analysis. Transactions of Nonferrous Metals Society of China , 2008, 18(6): 1319–1327
doi: 10.1016/S1003-6326(09)60004-2
68 Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology , 2006, 87(1): 53–63
doi: 10.1890/04-1724 pmid:16634296
69 He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand J D, Hobbie S E, Reich P B, Zhou J. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecology Letters , 2010, 13(5): 564–575
doi: 10.1111/j.1461-0248.2010.01453.x pmid:20337697
70 .ter Braak C J F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology , 1986, 67(5): 1167–1179
doi: 10.2307/1938672
71 ?kland R H, Eilertsen O. Canonical correspondence analysis with variation partitioning: Some comments and an application. Journal of Vegetation Science , 1994, 5(1): 117–126
doi: 10.2307/3235645
72 Ramette A, Tiedje J M. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences of the United States of America , 2007, 104(8): 2761–2766
doi: 10.1073/pnas.0610671104 pmid:17296935
73 Yergeau E, Kang S, He Z, Zhou J, Kowalchuk G A. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.The ISME Journal , 2007, 1(2): 163–179
doi: 10.1038/ismej.2007.24 pmid:18043626
74 Wu L, Kellogg L, Devol A H, Tiedje J M, Zhou J. Microarray-based characterization of microbial community functional structure and heterogeneity in marine sediments from the Gulf of Mexico. Applied and Environmental Microbiology , 2008, 74(14): 4516–4529
doi: 10.1128/AEM.02751-07 pmid:18515485
75 Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Van Nostrand J D, Deng Y, He Z, Wu L, Zhou J, Xiao X. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(12): 4840–4845
doi: 10.1073/pnas.0810418106 pmid:19273854
76 Xiong J, Wu L, Tu S, Van Nostrand J D, He Z, Zhou J, Wang G.Microbial communities and functional genes associated with soil arsenic contamination and rhizosphere of the arsenic hyper-accumulating plant Pteris vittata L. Applied and Environmental Microbiology , 2010 (in press, AEM.00500-10)
77 Liu W, Wang A, Cheng S, Logan B E, Yu H, Deng Y, Nostrand J D V, Wu L, He Z, Zhou J. Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes. Environmental Science & Technology , 2010, 44(19): 7729–7735
doi: 10.1021/es100608a pmid:20831218
78 Dennis P, Edwards E A, Liss S N, Fulthorpe R. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Applied and Environmental Microbiology , 2003, 69(2): 769–778
doi: 10.1128/AEM.69.2.769-778.2003 pmid:12570994
79 Deng Y, He Z, Van Nostrand J D, Zhou J. Design and analysis of mismatch probes for long oligonucleotide microarrays. BMC Genomics , 2008, 9(1): 491
doi: 10.1186/1471-2164-9-491 pmid:18928550
80 Chen Q, Yin H, Luo H, Xie M, Qiu G, Liu X. Micro-array based whole-genome hybridization for detection of microorganisms in acid mine drainage and bioleaching systems. Hydrometallurgy , 2009, 95(1-2): 96–103
doi: 10.1016/j.hydromet.2008.05.003
81 Denef V J, Park J, Rodrigues J L M, Tsoi T V, Hashsham S A, Tiedje J M. Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environmental Microbiology , 2003, 5(10): 933–943
doi: 10.1046/j.1462-2920.2003.00490.x pmid:14510847
82 Relógio A, Schwager C, Richter A, Ansorge W, Valcárcel J. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Research , 2002, 30(11): e51
doi: 10.1093/nar/30.11.e51 pmid:12034852
83 Cho J C, Tiedje J M. Quantitative detection of microbial genes by using DNA microarrays. Applied and Environmental Microbiology , 2002, 68(3): 1425–1430
doi: 10.1128/AEM.68.3.1425-1430.2002 pmid:11872496
84 Zhou J, Thompson D K. Challenges in applying microarrays to environmental studies. Current Opinion in Biotechnology , 2002, 13(3): 204–207
doi: 10.1016/S0958-1669(02)00319-1 pmid:12180093
85 Schaupp C J, Jiang G, Myers T G, Wilson M A. Active mixing during hybridization improves the accuracy and reproducibility of microarray results. BioTechniques , 2005, 38(1): 117–119
doi: 10.2144/05381MT01 pmid:15679093
86 Zhou X C, Wu L Y, Zhou J Z. Fabrication of DNA microarrays on nanoengineered polymeric ultrathin film prepared by self-assembly of polyelectrolyte multilayers. Langmuir , 2004, 20(20): 8877–8885
doi: 10.1021/la048950b pmid:15379521
87 Branham W S, Melvin C D, Han T, Desai V G, Moland C L, Scully A T, Fuscoe J C. Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements. BMC Biotechnology , 2007, 7(1): 8
doi: 10.1186/1472-6750-7-8 pmid:17295919
88 Kumar A, Larsson O, Parodi D, Liang Z. Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Research , 2000, 28(14): e71
doi: 10.1093/nar/28.14.e71 pmid:10908345
89 Gudnason H, Dufva M, Duong Bang D, Wolff A. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes. BioTechniques , 2008, 45(3): 261–271
doi: 10.2144/000112905 pmid:18778250
90 DeSantis T Z, Brodie E L, Moberg J P, Zubieta I X, Piceno Y M, Andersen G L. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecology , 2007, 53(3): 371–383
doi: 10.1007/s00248-006-9134-9 pmid:17334858
91 Leigh M B, Pellizari V H, Uhlík O, Sutka R, Rodrigues J, Ostrom N E, Zhou J, Tiedje J M. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs).The ISME Journal , 2007, 1(2): 134–148
doi: 10.1038/ismej.2007.26 pmid:18043623
92 Gu B, Brooks S C, Roh Y, Jardine P M. Geochemical reactions and dynamics during titration of a contaminated groundwater with high uranium, aluminum, and calcium. Geochimica et Cosmochimica Acta , 2003, 67(15): 2749–2761
doi: 10.1016/S0016-7037(03)00097-8
93 Wu W M, Carley J, Gentry T, Ginder-Vogel M A, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace M N, Nyman J, Luo J, Gentile M E, Fields M W, Hickey R F, Gu B, Watson D, Cirpka O A, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability. Environmental Science & Technology , 2006, 40(12): 3986–3995
doi: 10.1021/es051960u pmid:16830572
94 Wu W M, Carley J, Luo J, Ginder-Vogel M A, Cardenas E, Leigh M B, Hwang C, Kelly S D, Ruan C, Wu L, Van Nostrand J D, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields M W, Gu B, Watson D, Kemner K M, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environmental Science & Technology , 2007, 41(16): 5716–5723
doi: 10.1021/es062657b pmid:17874778
95 Xu M, Wu W M, Wu L, He Z, Van Nostrand J D, Deng Y, Luo J, Carley J, Ginder-Vogel M, Gentry T J, Gu B, Watson D, Jardine P M, Marsh T L, Tiedje J M, Hazen T, Criddle C S, Zhou J. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation.The ISME Journal , 2010, 4(8): 1060–1070
doi: 10.1038/ismej.2010.31 pmid:20237512
96 Tas N, van Eekert M H, Schraa G, Zhou J, de Vos W M, Smidt H. Tracking functional guilds: “Dehalococcoides” spp. in European river basins contaminated with hexachlorobenzene. Applied and Environmental Microbiology , 2009, 75(14): 4696–4704
doi: 10.1128/AEM.02829-08 pmid:19376891
97 Kimes N E, Van Nostrand J D, Weil E, Zhou J, Morris P J. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environmental Microbiology , 2010, 12(2): 541–556
doi: 10.1111/j.1462-2920.2009.02113.x pmid:19958382
98 Zhang Y, Zhang X, Liu X, Xiao Y, Qu L, Wu L, Zhou J. Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes. FEMS Microbiology Letters , 2007, 266(2): 144–151
doi: 10.1111/j.1574-6968.2006.00511.x pmid:17233724
99 Lawton J H. Are there general laws in ecology? Oikos , 1999, 84(2): 177–192
doi: 10.2307/3546712
100 Reich P B, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature , 2001, 410(6830): 809–812
doi: 10.1038/35071062 pmid:11298447
101 Parnell J J, Rompato G, Latta L C I V 4th, Pfrender M E, Van Nostrand J D, He Z, Zhou J, Andersen G, Champine P, Ganesan B, Weimer B C, Aziz R K. Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS ONE , 2010, 5(9): e12919
doi: 10.1371/journal.pone.0012919 pmid:20957119
102 Xie J, He Z, Liu X, Liu X, Van Nostrand J D, Deng Y, Wu L, Qiu G, Zhou J.Geochip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Applied and Environmental Microbiology , 2010,
doi: 10.1128/AEM.01798-10
103 Rodríguez-Martínez E M, Pérez E X, Schadt C W, Zhou J, Massol-Deyá A A. Microbial diversity and bioremediation of a hydrocarbon-contaminated aquifer (Vega Baja, Puerto Rico). International Journal of Environmental Research and Public Health , 2006, 3(3): 292–300
doi: 10.3390/ijerph2006030036 pmid:16968977
104 Liang Y, Nostrand J D V, Wang J, Zhang X, Zhou J, Li G. Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil. Chemosphere , 2009, 75(2): 193–199
doi: 10.1016/j.chemosphere.2008.12.007 pmid:19144375
105 Liang Y, Van Nostrand J D, Deng Y, He Z, Wu L, Zhang X, Li G, Zhou J. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. The ISME Journal , 2010, (in press)
doi: 10.1038/ismej.2010.142 pmid:20861922
106 Hazen T C, Dubinsky E A, DeSantis T Z, Andersen G L, Piceno Y M, Singh N, Jansson J K, Probst A, Borglin S E, Fortney J L, Stringfellow W T, Bill M, Conrad M E, Tom L M, Chavarria K L, Alusi T R, Lamendella R, Joyner D C, Spier C, Baelum J, Auer M, Zemla M L, Chakraborty R, Sonnenthal E L, D’haeseleer P, Holman H Y N, Osman S, Lu Z, Van Nostrand J D, Deng Y, Zhou J, Mason O U. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science , 2010, 330(6001): 204–208
doi: 10.1126/science.1195979 pmid:20736401
107 Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. Genome sequencing in microfabricated high-density picolitre reactors. Nature , 2005, 437(7057): 376–380
pmid:16056220
108 Binladen J, Gilbert M T P, Bollback J P, Panitz F, Bendixen C, Nielsen R, Willerslev E, Hahn M. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE , 2007, 2(2): e197
doi: 10.1371/journal.pone.0000197 pmid:17299583
109 Hamady M, Walker J J, Harris J K, Gold N J, Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods , 2008, 5(3): 235–237
doi: 10.1038/nmeth.1184 pmid:18264105
110 Iwai S, Chai B, Sul W J, Cole J R, Hashsham S A, Tiedje J M. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment.The ISME Journal , 2010, 4(2): 279–285
doi: 10.1038/ismej.2009.104 pmid:19776767
111 Qin J, Li R, Raes J, Arumugam M, Burgdorf K S, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich S D, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature , 2010, 464(7285): 59–65
doi: 10.1038/nature08821 pmid:20203603
[1] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[2] Guanyu Jiang, Can Wang, Lu Song, Xing Wang, Yangyang Zhou, Chunnan Fei, He Liu. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster[J]. Front. Environ. Sci. Eng., 2021, 15(3): 46-.
[3] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[4] Husen ZHANG. Using pyrosequencing and quantitative PCR to analyze microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 21-27.
[5] GENG Jinju, WANG Qiang, WANG Xiaorong, NIU Xiaojun. Effects of environmental factors on the production and release of matrix-bound phosphine from lake sediments[J]. Front.Environ.Sci.Eng., 2007, 1(1): 120-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed