Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (1) : 48-56    https://doi.org/10.1007/s11783-011-0305-7
RESEARCH ARTICLE
Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich wastewater
Rongchang WANG1,2(), Xinmin ZHAN1, Yalei ZHANG2, Jianfu ZHAO2
1. Department of Civil Engineering, National University of Ireland, Galway, Ireland; 2. State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Aquatic Environment, Ministry of Education of China, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(320 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nitrogen removal performance and nitrifying population dynamics were investigated in a redox stratified membrane biofilm reactor (RSMBR) under oxygen limited condition to treat ammonium-rich wastewater. When the NH4+-N loading rate increased from 11.1±1.0 to 37.2±3.2 gNH4+-N·m-2·d-1, the nitrogen removal in the RSMBR system increased from 18.0±9.6 mgN·d-1 to 128.9±61.7 mgN·d-1. Shortcut nitrogen removal was achieved with nitrite accumulation of about 22.3±5.3 mgNO2--N·L-1. Confocal micrographs showed the stratified distributions of nitrifiers and denitrifiers in the membrane aerated biofilms (MABs) at day 120, i.e., ammonia and nitrite oxidizing bacteria (AOB and NOB) were dominant in the region adjacent to the membrane, while heterotrophic bacteria propagated at the top of the biofilm. Real-time qPCR results showed that the abundance of amoA gene was two orders of magnitude higher than the abundance of nxrA gene in the MABs. However, the nxrA gene was always detected during the operation time, which indicates the difficulty of complete washout of NOB in MABs. The growth of heterotrophic bacteria compromised the dominance of nitrifiers in biofilm communities, but it enhanced the denitrification performance of the RSMBR system. Applying a high ammonia loading together with oxygen limitation was found to be an effective way to start nitrite accumulation in MABs, but other approaches were needed to sustain or improve the extent of nitritation in nitrogen conversion in MABs.

Keywords ammonium-rich wastewater      membrane biofilm reactor      nitrification      redox stratification      shortcut nitrogen removal     
Corresponding Author(s): WANG Rongchang,Email:rongchang.wang@gmail.com   
Issue Date: 05 March 2011
 Cite this article:   
Rongchang WANG,Xinmin ZHAN,Yalei ZHANG, et al. Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(1): 48-56.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0305-7
https://academic.hep.com.cn/fese/EN/Y2011/V5/I1/48
runtime/dpHDO/(mg·L-1)NH4+-N loading (volumetric)/(gN·L-1·d-1)
10-206.5-7.50.51-2.670.20-0.26
220-527.2-7.80.51-2.670.20-0.26
352-607.5-8.00.05-0.510.26-0.63
460-1408.0-8.30.03-0.050.63-0.78
Tab.1  Operational conditions of the RSMBR
Fig.1  Schematic of the RSMBR system
probenames in Oligonucleotide Probe Database (OPD)sequence (5′-3′)target organism(s)dye
EUB338S-D-Bact-0338-a-A-18GCT GCC TCC CGT AGG AGTdomain BacteriaFLUO
EUB338IIS-*-BactP-0338-a-A-18GCA GCC ACC CGT AGG TGTPlanctomycetalesFLUO
EUB338IIIS-*-BactV-0338-a-A-18GCT GCC ACC CGT AGG TGTVerrucomicrobiaFLUO
non EUBS-*-Bact-338-a-B-18ACT CCT ACG GGA GGC AGCdoes not hybridize to any organismsFLUO
Nso190S-F-Baob-0189-a-A-19CGA TCC CCT GCT TTT CTC Cβ-subgroup ammonia-oxidizing bacteriaCy3
Nso1225S-F-bAOB-1224-a-A-20CGC CAT TGT ATT ACG TGT GAβ-subgroup ammonia-oxidizing bacteriaCy3
Nmo218-CGG CCG CTC CAA AAG CATNitrosomonas oligotrophaCy3
Nsm156S-G-Nsm-0155-a-A-19TAT TAG CAC ATC TTT CGA TNitrosomonas spp., Nitrosococcus mobilisCy3
NIT3S-G-Nbac-1035-a-A-18CCT GTG CTC CAT GCT CCGNitrobacterCy5
CNIT3-CCT GTG CTC CAG GCT CCGcompetitor for NIT3Cy5
Ntspa662S-G-Ntspa-662-a-A-18GGA ATT CCG CGC TCC TCTNitrospiraCy5
cNtspa662-GGA ATT CCG CTC TCC TCTcompetitor for Ntspa662Cy5
Tab.2  Probes used for fluorescence in situ hybridization (FISH)
Fig.2  Nitrogen conversion performance of RSMBR
Fig.3  Correlations between ammonia-N loading rate and ammonia-N removal flux in RSMBR systems
Fig.4  CLSM micrographs of biofilm sections sampled at day 20 (a) and day 120 (b). The underside is the base of biofilm. Scale bar: 50 μm. The bold white lines show the positions of substratum (i.e., silicone membrane) on biofilm sections
Fig.5  Changes of abundance of and genes determined by real-time qPCR in the RSMBR during the operation time
1 Smith V H, Tilman G D, Nekola J C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution , 1999, 100(1-3): 179–196
doi: 10.1016/S0269-7491(99)00091-3 pmid:15093117
2 Hellinga C, Schellen A A J C, Mulder J W, van Loosdrecht M C M, Heijnen J J. The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology , 1998, 37(9): 135–142
doi: 10.1016/S0273-1223(98)00281-9
3 Ahn Y H. Sustainable nitrogen elimination biotechnologies: a review. Process Biochemistry , 2006, 41(8): 1709–1721
doi: 10.1016/j.procbio.2006.03.033
4 Peng Y Z, Zhu G B. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology , 2006, 73(1): 15–26
doi: 10.1007/s00253-006-0534-z pmid:17028876
5 Sinha B, Annachhatre A P. Partial nitrification—operational parameters and microorganisms involved. Reviews in Environmental Science and Biotechnology , 2007, 6(4): 1569–1705
doi: 10.1007/s11157-006-9116-x
6 Guo J, Wang S, Huang H, Peng Y, Ge S, Wu C, Sun Z. Efficient and integrated start-up strategy for partial nitrification to nitrite treating low C/N domestic wastewater. Water Science and Technology , 2009, 60(12): 3243–3251
pmid:19955649
7 Jubany I, Lafuente J, Baeza J A, Carrera J. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements. Water Research , 2009, 43(11): 2761–2772
doi: 10.1016/j.watres.2009.03.022 pmid:19371923
8 Jenicek P, Svehla P, Zabranska J, Dohanyos M. Factors affecting nitrogen removal by nitritation/denitritation. Water Science and Technology , 2004, 49(5-6): 73–79
pmid:15137409
9 Aslan S, Miller L, Dahab M. Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors. Bioresource Technology , 2009, 100(2): 659–664
doi: 10.1016/j.biortech.2008.07.033 pmid:18757199
10 Anthonisen A C, Loehr R C, Prakasam T B, Srinath E G. Inhibition of nitrification by ammonia and nitrous acid. Journal — Water Pollution Control Federation , 1976, 48(5): 835–852
pmid:948105
11 Kim D J, Lee D I, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresource Technology , 2006, 97(3): 459–468
doi: 10.1016/j.biortech.2005.03.032 pmid:15927463
12 Van Hulle S W H, Volcke E I P, Teruel J L, Donckels B, van Loosdrecht M C M, Vanrolleghem P A. Influence of temperature and pH on the kinetics of the Sharon nitritation process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2007, 82(5): 471–480
doi: 10.1002/jctb.1692
13 van Kempen R, ten Have C C R, Meijer S C F, Mulder J W, Duin J O J, Uijterlinde C A, van Loosdrecht M C M. SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality. Water Science and Technology , 2005, 52(4): 55–62
pmid:16235746
14 Gali A, Dosta J, van Loosdrecht M C M, Mata-Alvarez J. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry , 2007, 42(4): 715–720
doi: 10.1016/j.procbio.2006.12.002
15 Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification. Water Science and Technology , 1999, 39(6): 61–68
doi: 10.1016/S0273-1223(99)00123-7
16 Ciudad G, González R, Bornhardt C, Antileo C. Modes of operation and pH control as enhancement factors for partial nitrification with oxygen transport limitation. Water Research , 2007, 41(20): 4621–4629
doi: 10.1016/j.watres.2007.06.036 pmid:17645907
17 Brindle K, Stephenson T, Semmens M J. Nitrification and oxygen utilisation in a membrane aeration bioreactor. Journal of Membrane Science , 1998, 144(1-2): 197–209
doi: 10.1016/S0376-7388(98)00047-7
18 Suzuki Y, Hatano N, Ito S, Ikeda H. Performance of nitrogen removal and biofilm structure of porous gas permeable membrane reactor. Water Science and Technology , 2000, 41(4-5): 211–217
19 Hsieh Y L, Tseng S K, Chang Y J. Nitrification using polyvinyl alcohol-immobilized nitrifying biofilm on an O2-enriching membrane. Biotechnology Letters , 2002, 24(4): 315–319
doi: 10.1023/A:1014084700375
20 Semmens M J, Dahm K, Shanahan J, Christianson A. COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Research , 2003, 37(18): 4343–4350
doi: 10.1016/S0043-1354(03)00416-0 pmid:14511704
21 Terada A, Hibiya K, Nagai J, Tsuneda S, Hirata A. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. Journal of Bioscience and Bioengineering , 2003, 95(2): 170–178
pmid:16233387
22 Satoh H, Ono H, Rulin B, Kamo J, Okabe S, Fukushi K. Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors. Water Research , 2004, 38(6): 1633–1641
doi: 10.1016/j.watres.2003.12.020 pmid:15016541
23 Walter B, Haase C, R?biger N. Combined nitrification/denitrification in a membrane reactor. Water Research , 2005, 39(13): 2781–2788
doi: 10.1016/j.watres.2005.04.027 pmid:16000209
24 Terada A, Yamamoto T, Igarashi R, Tsuneda S, Hirata A. S. T and Hirata A. Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification. Biochemical Engineering Journal , 2006, 28(2): 123–130
doi: 10.1016/j.bej.2005.10.001
25 Downing L S, Nerenberg R. Performance and microbial ecology of the hybrid membrane biofilm process for concurrent nitrification and denitrification of wastewater. Water Science and Technology , 2007, 55(8-9): 355–362
doi: 10.2166/wst.2007.277 pmid:17547005
26 Syron E, Casey E. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science & Technology , 2008, 42(6): 1833–1844
doi: 10.1021/es0719428 pmid:18409602
27 Hwang J H, Cicek N, Oleszkiewicz J A. Membrane biofilm reactors for nitrogen removal: state-of-the-art and research needs. Water Science and Technology , 2009, 60(11): 2739–2747
doi: 10.2166/wst.2009.698 pmid:19934494
28 Wang R, Terada A, Lackner S, Smets B F, Henze M, Xia S, Zhao J. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: modeling and experimental comparison. Water Research , 2009, 43(10): 2699–2709
doi: 10.1016/j.watres.2009.03.017 pmid:19375773
29 Terada A, Lackner S, Tsuneda S, Smets B F. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co- versus counter-diffusion on reactor performance. Biotechnology and Bioengineering , 2007, 97(1): 40–51
doi: 10.1002/bit.21213 pmid:17013935
30 Gong Z, Liu S, Yang F, Bao H, Furukawa K. Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal. Bioresource Technology , 2008, 99(8): 2749–2756
doi: 10.1016/j.biortech.2007.06.040 pmid:17702571
31 LaPara T M, Cole A C, Shanahan J W, Semmens M J. The effects of organic carbon, ammoniacal-nitrogen, and oxygen partial pressure on the stratification of membrane-aerated biofilms. Journal of Industrial Microbiology & Biotechnology , 2006, 33(4): 315–323
doi: 10.1007/s10295-005-0052-5 pmid:16292557
32 Feng Y J, Tseng S K, Hsia T H, Ho C M, Chou W P. Partial nitrification of ammonium-rich wastewater as pretreatment for anaerobic ammonium oxidation (Anammox) using membrane aeration bioreactor. Journal of Bioscience and Bioengineering , 2007, 104(3): 182–187
doi: 10.1263/jbb.104.182 pmid:17964481
33 Hwang J H, Cicek N, Oleszkiewicz J A. Achieving biofilm control in a membrane biofilm reactor removing total nitrogen. Water Research , 2010, 44(7): 2283–2291
doi: 10.1016/j.watres.2009.12.022 pmid:20045168
34 Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews , 1995, 59(1): 143–169
pmid:7535888
35 Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, De Vos P, Verstraete W, Boon N. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology , 2007, 75(1): 211–221
doi: 10.1007/s00253-006-0805-8 pmid:17256118
36 Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology , 1997, 63(12): 4704–4712
pmid:9406389
37 Wertz S, Poly F, Le Roux X, Degrange V. Development and application of a PCR-denaturing gradient gel electrophoresis tool to study the diversity of Nitrobacter-like nxrA sequences in soil. FEMS Microbiology Ecology , 2008, 63(2): 261–271
doi: 10.1111/j.1574-6941.2007.00416.x pmid:18199085
38 Schramm A, De Beer D, Wagner M, Amann R. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Applied and Environmental Microbiology , 1998, 64(9): 3480–3485
pmid:9726900
39 Cole A C, Semmens M J, LaPara T M. Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen. Applied and Environmental Microbiology , 2004, 70(4): 1982–1989
doi: 10.1128/AEM.70.4.1982-1989.2004 pmid:15066788
40 Vázquez-Padín J, Mosquera-Corral A, Campos J L, Méndez R, Revsbech N P. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Research , 2010, 44(15): 4359–4370
doi: 10.1016/j.watres.2010.05.041 pmid:20646732
41 Li T, Bai R, Liu J. Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm. Journal of Biotechnology , 2008, 135(1): 52–57
doi: 10.1016/j.jbiotec.2008.02.011 pmid:18403037
42 Bell A, Aoi Y, Terada A, Tsuneda S, Hirata A. Comparison of spatial organization in top-down- and membrane-aerated biofilms: a numerical study. Water Science and Technology , 2005, 52(7): 173–180
43 Wyffels S, Boeckx P, Pynaert K, Zhang D, Van Cleemput O, Chen G, Verstraete W. Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process. Water Science and Technology , 2004, 49(5-6): 57–64
pmid:15137407
44 Sliekers A O, Haaijer S C M, Stafsnes M H, Kuenen J G, Jetten M S M. Competition and coexistence of aerobic ammonium-and nitrite-oxidizing bacteria at low oxygen concentrations. Applied Microbiology and Biotechnology , 2005, 68(6): 808–817
doi: 10.1007/s00253-005-1974-6 pmid:15818474
45 Blackburne R, Yuan Z G, Keller J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation , 2008, 19(2): 303–312
doi: 10.1007/s10532-007-9136-4 pmid:17611802
46 Yamamoto T, Takaki K, Koyama T, Furukawa K. Novel partial nitritation treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology. Journal of Bioscience and Bioengineering , 2006, 102(6): 497–503
doi: 10.1263/jbb.102.497 pmid:17270713
47 Villaverde S, Fdz-Polanco F, Garca P A. Nitrifying biofilm acclimation to free ammonia in submerged biofilters. Start-up influence. Water Research , 2000, 40(2): 602–610
doi: 10.1016/S0043-1354(99)00175-X
[1] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[2] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[3] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[4] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[5] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[6] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[7] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[8] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
[9] Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn. Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio[J]. Front. Environ. Sci. Eng., 2020, 14(1): 4-.
[10] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[11] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[12] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[13] Qinqin Liu, Miao Li, Xiang Liu, Quan Zhang, Rui Liu, Zhenglu Wang, Xueting Shi, Jin Quan, Xuhui Shen, Fawang Zhang. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism[J]. Front. Environ. Sci. Eng., 2018, 12(6): 6-.
[14] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[15] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed