Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (2) : 184-194    https://doi.org/10.1007/s11783-011-0309-3
RESEARCH ARTICLE
Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors
Chuanjia JIANG, Pengyi ZHANG()
State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbonyl compounds in indoor air are of great concern for their adverse health effects. Between February and May, 2009, concentrations of 13 carbonyl compounds were measured in an academic building in Beijing, China. Total concentration of the detected carbonyls ranged from 20.7 to 189.1 μg·m-3, and among them acetone and formaldehyde were the most abundant, with mean concentrations of 26.4 and 22.6 μg·m-3, respectively. Average indoor concentrations of other carbonyls were below 10 μg·m-3. Principal component analysis identified a combined effect of common indoor carbonyl sources and ventilation on indoor carbonyl levels. Diurnal variations of the carbonyl compounds were investigated in one office room, and carbonyl concentrations tended to be lower in the daytime than at night, due to enhanced ventilation. Average concentrations of carbonyl compounds in the office room were generally higher in early May than in late February, indicating the influence of temperature. Carbonyl source emission rates from both the room and human occupants were estimated during two lectures, based on one-compartment mass balance model. The influence of human occupants on indoor carbonyl concentrations varies with environmental conditions, and may become significant in the case of a large human occupancy.

Keywords carbonyl compounds      indoor air      ventilation      human occupancy      source emission rate (SER)      principal component analysis (PCA)     
Corresponding Author(s): ZHANG Pengyi,Email:zpy@tsinghua.edu.cn   
Issue Date: 01 April 2012
 Cite this article:   
Pengyi ZHANG,Chuanjia JIANG. Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors[J]. Front Envir Sci Eng, 2012, 6(2): 184-194.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0309-3
https://academic.hep.com.cn/fese/EN/Y2012/V6/I2/184
eventdatetemperature /°CRH /%CO2 /ppmO3 /ppb
OFApril 24th to 29th25.6 (21.8-27.9)a)16.4 (8.6-25.9) a)604 (330-830) a)21.6 (3.1-47.0) a)
ODApril 29th21.126.746063.2
CRMay 27th29.937.162010.7
DV1February 22nd22.8 (19.5-25.7) a)20.7(18.3-23.6) a)n. m. b)n. m.
DV2May 3rd29.9 (27.9-31.7) a)18.4 (13.7-22.7) a)600 (461-688) a)7.8 (1.8-19.9) a)
MR1April 3rd23.1/24.4c)18.5/22.2 c)543 (502-608) a,d)n. m.
MR2May 26th27.8/26.6 c)18.4/49.5 c)534 (515-555) a,d)60.6 (44.4-74.2) a,d)
Tab.1  Summary of indoor temperature, RH, CO, and ozone concentrations during the sampling events
compoundsoffice rooms and meeting rooma)(N = 22)copy room(N = 1)outdoors(N = 1)
meanSDminmax
carbonyls/(μg·m-3)
formaldehyde22.611.06.347.579.87.0
acetaldehyde8.54.02.417.014.44.9
acetone26.413.27.557.443.77.4
propionaldehyde1.40.80.33.63.81.0
crotonaldehyden.d.b)-n.d.n.d.n.d.n.d.
C4 carbonylsc)3.21.8n.d.7.68.02.3
Benzaldehyde0.90.5n.d.2.23.40.4
Valeraldehyde0.40.5n.d.1.83.3n.d.
p-tolualdehyden.d.-n.d.n.d.n.d.n.d.
Hexaldehyde3.82.9n.d.12.19.0n.d.
total carbonyls67.830.720.7148.2165.923.9
TVOC/(μg·m-3)0.1370.0980.0470.4510.2610.111
Tab.2  Carbonyl compound and TVOC concentrations in office rooms, a meeting room, a copy room, and on an outdoor balcony in the academic building
FAAAACPAC4BAVAHATVOCCO2O3
formaldehyde (FA)1
acetaldehyde (AA)0.88b)1
acetone (AC)0.77b)0.76b)1
propionaldehyde (PA)0.92b)0.96b)0.79b)1
C4 carbonyls (C4)0.76b)0.78b)0.76b)0.77b)1
benzaldehyde (BA)0.93b)0.93b)0.84b)0.95b)0.84b)1
valeraldehyde (VA)0.81b)0.85b)0.65b)0.89b)0.59b)0.83b)1
hexaldehyde (HA)0.84b)0.87b)0.85b)0.91b)0.72b)0.90b)0.85b)1
TVOC0.50a)0.440.60b)0.46a)0.78b)0.54a)0.290.56b)1
CO20.62b)0.63b)0.57b)0.61b)0.61b)0.68b)0.380.68b)0.59b)1
ozone (O3)-0.38-0.41-0.55a)-0.45a)-0.29-0.39-0.25-0.53a)-0.41-0.46a)1
Tab.3  Pearson correlation coefficients for carbonyls, TVOC, CO , and ozone concentrations
component
PC1PC2
formaldehyde0.923-0.178
acetaldehyde0.936-0.222
acetone0.8810.121
propionaldehyde0.956-0.222
C4 carbonyls0.8580.155
benzaldehyde0.970-0.137
valeraldehyde0.825-0.476
hexaldehyde0.948-0.043
TVOC0.6450.601
CO20.7280.372
ozone-0.519-0.488
initial eigenvalue7.891.15
variance/%71.710.5
cumulative/%71.782.2
Tab.4  Component matrix from principal component analysis
Fig.1  Diurnal variation of carbonyl compound concentrations and TVOC in one office room during sampling events DV1 and DV2 (Sampling dates for DV1 and DV2 are February 22nd and May 3rd, respectively.)
MR1MR2
beforeafter-1after-2beforeafter-1after-2
formaldehyde19.724.725.424.149.857.9
acetaldehyde12.014.714.510.325.927.2
acetone56.259.762.318.076.167.9
propionaldehyde1.21.61.61.43.25.0
crotonaldehyden.d.a)n.d.n.d.n.d.n.d.n.d.
C4 carbonyls3.95.05.04.98.211.0
benzaldehyde1.31.41.40.91.21.8
valeraldehyden.d.n.d.n.d.0.81.62.1
p-tolualdehyden.d.n.d.n.d.n.d.n.d.n.d.
hexaldehyde4.14.24.32.37.07.2
total carbonyls99.0111.9115.063.1173.4180.6
Tab.5  Carbonyl concentrations measured in Room 533 before and after lectures during sampling events MR1 and MR2 /(μg·m)
carbonyl compoundsQr /(μg·min-1)Qr /(μg·min-1·m-2)Qh /(μg·min-1·person-1)
MR1MR2MR1MR2MR1MR2
formaldehyde108.1182.21.101.85-0.44-1.47
acetaldehyde44.961.00.460.620.260.24
acetone303.2158.83.081.61-2.184.06
propionaldehyde4.718.80.050.190.01-0.46
C4 carbonyls15.534.20.160.350.04-0.64
benzaldehyde4.95.60.050.060.00-0.14
valeraldehyde-7.0-0.07--0.11
hexaldehyde20.019.60.200.20-0.080.10
Tab.6  Source emission rates of carbonyl compounds from the room and per occupant for sampling events MR1 and MR2
1 Weng M L, Zhu L Z, Yang K, Chen S G. Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. Journal of Hazardous Materials , 2009, 164(2-3): 700-706
doi: 10.1016/j.jhazmat.2008.08.094 pmid:18926625
2 Zhang J, Lioy P J,He Q C. Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environmental Science & Technology , 1994, 28(1): 146-152
doi: 10.1021/es00050a020
3 Reiss R, Ryan P B, Tibbetts S J, Koutrakis P. Measurement of organic acids, aldehydes, and ketones in residential environments and their relation to ozone. Journal of the Air & Waste Management Association , 1995, 45(10): 811-822
pmid:7583840
4 Subramanian P, Breuer G M, Reynolds S J. Low molecular weight carbonyls in large midwestern office buildings. International Journal of Environmental Analytical Chemistry , 2000, 76(3): 215-239
doi: 10.1080/03067310008034132
5 Sawant A A, Na K, Zhu X N, Cocker K, Butt S, Song C, Cocker D R III. Characterization of PM2.5 and selected gas-phase compounds at multiple indoor and outdoor sites in Mira Loma, California. Atmospheric Environment , 2004, 38(37): 6269-6278
doi: 10.1016/j.atmosenv.2004.08.043
6 Sax S N, Bennett D H, Chillrud S N, Kinney P L, Spengler J D. Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles. Journal of Exposure Analysis and Environmental Epidemiology , 2004, 14(Suppl 1): S95-S109
doi: 10.1038/sj.jea.7500364 pmid:15118751
7 Liu W, Zhang J, Zhang L, Turpin B J, Welsel C P, Morandi M T, Stock T H, Colome S, Korn L R. Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. Atmospheric Environment , 2006, 40(12): 2202-2214
doi: 10.1016/j.atmosenv.2005.12.005
8 Báez A, Padilla H, García R, Torres M C, Rosas I, Belmont R. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico. Science of the Total Environment , 2003, 302(1-3): 211-226
doi: 10.1016/S0048-9697(02)00344-3 pmid:12526910
9 Jurvelin J A, Edwards R D, Vartiainen M, Pasanen P, Jantunen M J. Residential indoor, outdoor, and workplace concentrations of carbonyl compounds: relationships with personal exposure concentrations and correlation with sources. Journal of the Air & Waste Management Association , 2003, 53(5): 560-573
pmid:12774989
10 Santarsiero A, Fuselli S. Indoor and outdoor air carbonyl compounds correlation elucidated by principal component analysis. Environmental Research , 2008, 106(2): 139-147
doi: 10.1016/j.envres.2007.10.011 pmid:18061590
11 Ohura T, Amagai T, Senga Y, Fusaya M. Organic air pollutants inside and outside residences in Shimizu, Japan: levels, sources and risks. Science of the Total Environment , 2006, 366(2-3): 485-499
doi: 10.1016/j.scitotenv.2005.10.005 pmid:16298419
12 Clarisse B, Laurent A M, Seta N, Le Moullec Y, El Hasnaoui A, Momas I. Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings. Environmental Research , 2003, 92(3): 245-253
doi: 10.1016/S0013-9351(03)00039-2 pmid:12804521
13 Marchand C, Buillot B, Le Calve S, Mirabel P. Aldehyde measurements in indoor environments in Strasbourg (France). Atmospheric Environment , 2006, 40(7): 1336-1345
doi: 10.1016/j.atmosenv.2005.10.027
14 Marchand C, Le Calve S, Mirabel P, Glasser N, Casset A, Schneider N, de Blay F. Concentrations and determinants of gaseous aldehydes in 162 homes in Strasbourg (France). Atmospheric Environment , 2008, 42(3): 505-516
doi: 10.1016/j.atmosenv.2007.09.054
15 Dassonville C, Demattei C, Laurent A M, Le Moullec Y, Seta N, Momas I. Assessment and predictor determination of indoor aldehyde levels in Paris newborn babies’ homes. Indoor Air , 2009, 19(4): 314-323
doi: 10.1111/j.1600-0668.2009.00594.x pmid:19382955
16 Cavalcante R M, Campelo C S, Barbosa M J, Silveira E R, Carvalho T V, Nascimento R F. Determination of carbonyl compounds in air and cancer risk assessment in an academic institute in Fortaleza, Brazil. Atmospheric Environment , 2006, 40(29): 5701-5711
doi: 10.1016/j.atmosenv.2006.04.056
17 Feng Y L, Wen S, Wang X M, Sheng G Y, He Q S, Tang J H, Fu J M. Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou, China. Atmospheric Environment , 2004, 38(1): 103-112
doi: 10.1016/j.atmosenv.2003.09.061
18 Lü H X, Wen S, Feng Y L, Wang X N, Bi X H, Sheng G Y, Fu J M. Indoor and outdoor carbonyl compounds and BTEX in the hospitals of Guangzhou, China. Science of the Total Environment , 2006, 368(2-3): 574-584
doi: 10.1016/j.scitotenv.2006.03.044 pmid:16740294
19 Wang B, Lee S C, Ho K F, Kang Y M. Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong. Science of the Total Environment , 2007, 377(1): 52-60
doi: 10.1016/j.scitotenv.2007.01.099 pmid:17346776
20 Pang X B, Mu Y J. Characteristics of carbonyl compounds in public vehicles of Beijing city: concentrations, sources, and personal exposures. Atmospheric Environment , 2007, 41(9): 1819-1824
doi: 10.1016/j.atmosenv.2006.10.057
21 Wang B, Lee S C, Ho K F. Characteristics of carbonyls: concentrations and source strengths for indoor and outdoor residential microenvironments in China. Atmospheric Environment , 2007, 41(13): 2851-2861
doi: 10.1016/j.atmosenv.2006.11.039
22 US Environmental Protection Agency (US EPA). Compendium Method TO-11A. Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology] , 1999
23 Gilbert N L, Guay M, David Miller J, Judek S, Chan C C, Dales R E. Levels and determinants of formaldehyde, acetaldehyde, and acrolein in residential indoor air in Prince Edward Island, Canada. Environmental Research , 2005, 99(1): 11-17
doi: 10.1016/j.envres.2004.09.009 pmid:16053923
24 Seaman V Y, Bennett D H, Cahill T M. Origin, occurrence, and source emission rate of acrolein in residential indoor air. Environmental Science & Technology , 2007, 41(20): 6940-6946
doi: 10.1021/es0707299 pmid:17993132
25 Nazaroff W W, Cass G R. Mathematical modeling of chemically reactive pollutants in indoor air. Environmental Science & Technology , 1986, 20(9): 924-934
doi: 10.1021/es00151a012
26 Ongwandee M, Moonrinta R, Panyametheekul S, Tangbanluekal C, Morrison G. Concentrations and strengths of formaldehyde and acetaldehyde in office buildings in Bangkok, Thailand. Indoor and Built Environment , 2009, 18(6): 569-575
doi: 10.1177/1420326X09349897
27 Seaman V Y, Charles M J, Cahill T M. A sensitive method for the quantification of acrolein and other volatile carbonyls in ambient air. Analytical Chemistry , 2006, 78(7): 2405-2412
doi: 10.1021/ac051947s pmid:16579627
28 Weschler C J. Ozone in indoor environments: concentration and chemistry. Indoor Air , 2000, 10(4): 269-288
doi: 10.1034/j.1600-0668.2000.010004269.x pmid:11089331
29 Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo R N. Variation in volatile organic compounds in the breath of normal humans. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 1999, 729(1-2): 75-88
doi: 10.1016/S0378-4347(99)00127-9 pmid:10410929
30 Curran A M, Rabin S I, Prada P A, Furton K G. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. Journal of Chemical Ecology , 2005, 31(7): 1607-1619
doi: 10.1007/s10886-005-5801-4 pmid:16222796
31 Weisel C P, Alimokhtari S, Sanders P F. Indoor air VOC concentrations in suburban and rural New Jersey. Environmental Science & Technology , 2008, 42(22): 8231-8238
doi: 10.1021/es8005223 pmid:19068799
32 Petrick L, Dubowski Y. Heterogeneous oxidation of squalene film by ozone under various indoor conditions. Indoor Air , 2009, 19(5): 381-391
doi: 10.1111/j.1600-0668.2009.00599.x pmid:19500173
33 Wisthaler A, Weschler C J. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. In: Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(15): 6568-6575
doi: 10.1073/pnas.0904498106 pmid:19706436
34 Pandrangi L S, Morrison G C. Ozone interactions with human hair: ozone uptake rates and product formation. Atmospheric Environment , 2008, 42(20): 5079-5089
doi: 10.1016/j.atmosenv.2008.02.009
35 Wisthaler A, Tamás G, Wyon D P, Str?m-Tejsen P, Space D, Beauchamp J, Hansel A, M?rk T D, Weschler C J. Products of ozone-initiated chemistry in a simulated aircraft environment. Environmental Science & Technology , 2005, 39(13): 4823-4832
doi: 10.1021/es047992j pmid:16053080
36 Coleman B K, Destaillats H, Hodgson A T, Nazaroff W W. Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics. Atmospheric Environment , 2008, 42(4): 642-654
doi: 10.1016/j.atmosenv.2007.10.001
37 Turner C, Spanel P, Smith D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiological Measurement , 2006, 27(4): 321-337
doi: 10.1088/0967-3334/27/4/001 pmid:16537976
38 Kinoyama M, Nitta H, Watanabe A, Ueda H. Acetone and isoprene concentrations in exhaled breath in healthy subjects. Journal of Health Science , 2008, 54(4): 471-477
doi: 10.1248/jhs.54.471
39 Schwarz K, Pizzini A, Arendacka B, Zerlauth K, Filipiak W, Schmid A, Dzien A, Neuner S, Lechleitner M, Scholl-Burgi S, Miekisch W, Schubert J, Unterkofler K, Witkovsky V, Gastl G, Amann A. Breath acetone-aspects of normal physiology related to age and gender as determined in a PTR-MS study. Journal of Breath Research , 2009, 3(2): 027003
40 Naitoh K, Tsuda T, Nose K, Kondo T, Takasu A, Hirabayashi T. New measurement of hydrogen gas and acetone vapor in gases emanating from human skin. Instrumentation Science & Technology , 2002, 30(3): 267-280
doi: 10.1081/CI-120013506
41 Sekine Y, Toyooka S, Watts S F. Determination of acetaldehyde and acetone emanating from human skin using a passive flux sampler—HPLC system. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2007, 859(2): 201-207
doi: 10.1016/j.jchromb.2007.09.033 pmid:17951116
42 Nazaroff W W. Inhalation intake fraction of pollutants from episodic indoor emissions. Building and Environment , 2008, 43(3): 269-277
doi: 10.1016/j.buildenv.2006.03.021
43 Weschler C J, Wisthaler A, Cowlin S, Tamás G, Str?m-Tejsen P, Hodgson A T, Destaillats H, Herrington J, Zhang J J, Nazaroff W W. Ozone-initiated chemistry in an occupied simulated aircraft cabin. Environmental Science & Technology , 2007, 41(17): 6177-6184
doi: 10.1021/es0708520 pmid:17937299
44 Lin Y M, Dueker S R, Jones A D, Ebeler S E, Clifford A J. Protocol for collection and HPLC analysis of volatile carbonyl compounds in breath. Clinical Chemistry , 1995, 41(7): 1028-1032
pmid:7600683
45 Fuchs P, Loeseken C, Schubert J K, Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. International Journal of Cancer , 2010, 126(11): 2663-2670
pmid:19839051
[1] Zhijian Liu, Haiyang Liu, Hang Yin, Rui Rong, Guoqing Cao, Qihong Deng. Prevention of surgical site infection under different ventilation systems in operating room environment[J]. Front. Environ. Sci. Eng., 2021, 15(3): 36-.
[2] Qingyan Chen. Can we migrate COVID-19 spreading risk?[J]. Front. Environ. Sci. Eng., 2021, 15(3): 35-.
[3] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[4] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
[5] Cong Liu, Yinping Zhang. Relations between indoor and outdoor PM2.5 and constituent concentrations[J]. Front. Environ. Sci. Eng., 2019, 13(1): 5-.
[6] Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
[7] Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 73-84.
[8] Can DONG, Lingxiao YANG, Chao YAN, Qi YUAN, Yangchun YU, Wenxing WANG. Particle size distributions, PM2.5 concentrations and water-soluble inorganic ions in different public indoor environments: a case study in Jinan, China[J]. Front Envir Sci Eng, 2013, 7(1): 55-65.
[9] Pinjing HE, Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO. Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium[J]. Front Envir Sci Eng Chin, 2011, 5(2): 175-185.
[10] LU Hao, ZHU Lizhong. Pollution survey of carbonyl compounds in train air[J]. Front.Environ.Sci.Eng., 2007, 1(1): 125-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed