Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    0, Vol. Issue () : 417-425    https://doi.org/10.1007/s11783-011-0310-x
RESEARCH ARTICLE
Determination of selected semi-volatile organic compounds in water using automated online solid-phase extraction with large-volume injection/gas chromatography/mass spectrometry
Yongtao LI1(), Christina L. MCCARTY1, Ed J. GEORGE2
1. Drinking Water Quality Laboratory, Underwriters Laboratories Inc., South Bend, IN 46617, USA; 2. Chemical Analysis, Bruker Daltonics, Fremont, CA 94538, USA
 Download: PDF(118 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A rapid, sensitive, and cost-effective analytical method was developed for the analysis of selected semi-volatile organic compounds in water. The method used an automated online solid-phase extraction technique coupled with programmed-temperature vaporization large-volume injection gas chromatography/mass spectrometry. The water samples were extracted by using a fully automated mobile rack system based on x-y-z robotic techniques using syringes and disposable 96-well extraction plates. The method was validated for the analysis of 30 semi-volatile analytes in drinking water, groundwater, and surface water. For a sample volume of 10 mL, the linear calibrations ranged from 0.01 or 0.05 to 2.5μg·L-1, and the method detection limits were less than 0.1μg·L-1. For the reagent water samples fortified at 1.0μg·L-1 and 2.0?μg·L-1, the obtained mean absolute recoveries were 70%–130% with relative standard deviations of less than 20% for most analytes. For the drinking water, groundwater, and surface water samples fortified at 1.0μg·L-1, the obtained mean absolute recoveries were 50%–130% with relative standard deviations of less than 20% for most analytes. The new method demonstrated three advantages: 1) no manipulation except the fortification of surrogate standards prior to extraction; 2) significant cost reduction associated with sample collection, shipping, storage, and preparation; and 3) reduced exposure to hazardous solvents and other chemicals. As a result, this new automated method can be used as an effective approach for screening and/or compliance monitoring of selected semi-volatile organic compounds in water.

Keywords automated solid-phase extraction      programmed-temperature vaporization      large-volume injection      gas chromatography/mass spectrometry      semi-volatile organic compounds      water analysis     
Corresponding Author(s): LI Yongtao,Email:Yongtao.Li@us.ul.com   
Issue Date: 05 September 2011
 Cite this article:   
Yongtao LI,Christina L. MCCARTY,Ed J. GEORGE. Determination of selected semi-volatile organic compounds in water using automated online solid-phase extraction with large-volume injection/gas chromatography/mass spectrometry[J]. Front Envir Sci Eng Chin, 0, (): 417-425.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0310-x
https://academic.hep.com.cn/fese/EN/Y0/V/I/417
Fig.1  Schematic diagram of the automated SPE Twin-PAL PTV-LVI/GC/MS system. S1: upper PAL head and syringe (2.5 mL); S2: lower PAL head and syringe (100 μL); C1: upper PAL control unit; C2: lower PAL control unit; W1: wash station for upper PAL syringe S1; W2: wash station for lower PAL syringe S2; ST: standard solution tray; ET: sample extraction tray; CT: eluate collection tray; WST: water sample tray; and SR: solvent reservoirs
procedurecondition and description
sorbent cleaningadd 0.5 mL of 1∶1 EtAc:DCM at 10 μL·s-1 and soak for 30 s to clean the sorbent
sorbent dryingapply nitrogen gas at 0.15 MPa pressure for 30 s to dry the sorbent
sorbent conditioningadd 0.5 mL methanol at 10 μL·s-1 and soak for 60 s to condition the sorbent
sorbent rinsingadd 0.5 mL reagent water at 20 μL·s-1 to rinse the sorbent
sample extractionload 10 mL sample (4 × 2.5 mL) at 20 μL·s-1 to extract the sample
post-extraction rinsingadd 1.0 mL reagent water at 20 μL·s-1 to rinse the sorbent
sorbent dryingapply nitrogen gas at 0.15 MPa pressure for 5 min to dry the sorbent
analyte elutionadd 160 μL of 1∶1 EtAc∶DCM at 10 μL·s-1 and elute the analytes into a 300 μL glass insert when the PTV-LVI/GC/MS was ready for injection
eluate concentrationapply nitrogen gas at 0.15 MPa pressure for 5 s to concentrate the eluate to approximately 90 μL
IS additionadd 10 μL of 2.0 μL·mL-1 IS solution into the eluate and mix well by using 5-10 syringe plunger strokes
online GC/MS injectioninject 50 μL extract mixture onto the PTV-LVI at 2 μL·s-1
Tab.1  Automated online SPE procedures and conditions
analyteion/(m/z)RT/minLR/(μg·L-1)mean RFCC/R2
acetochlor14614.30.05-2.50.2360.998
alachlor45, 160, 18814.60.01-2.51.0960.997
aldrin66, 26315.80.01-2.50.3230.999
atrazine20012.20.01-2.50.5420.997
benzo[a]pyrene25229.70.05-2.50.3540.996
bromacil205, 20715.50.01-2.50.4330.999
butachlor160, 176, 18818.40.01-2.51.5230.996
chlordane, alpha373, 37518.50.01-2.50.8071.000
chlordane, gamma373, 37518.00.01-2.50.8580.998
cyanazine212, 22516.00.05-2.50.0540.981
diazinon17912.80.01-2.50.3750.997
dieldrin7919.30.01-2.50.2800.998
endosulfan I159, 195, 24118.50.05-2.50.2440.997
endosulfan II159, 195, 24120.50.05-2.50.1680.996
endrin81, 243, 24520.10.05-2.50.2100.998
fenamiphos154, 30318.70.05-2.50.3170.990
heptachlor100, 27214.70.05-2.50.3150.996
heptachlor epoxide81, 353, 35517.20.01-2.50.6890.997
hexachlorobenzene28411.80.01-2.50.1920.995
lindane181, 18312.60.01-2.50.4860.997
methoxychlor22724.00.01-2.50.2900.996
metolachlor168, 23815.80.01-2.52.6121.000
metribuzin19814.30.05-2.50.6470.997
nonachlor, trans407, 40918.60.01-2.50.3130.999
pendimethalin25217.10.05-2.50.4370.995
prometon168, 21012.00.05-2.50.7480.995
propachlor12010.30.01-2.50.7340.998
simazine20112.10.05-2.50.3940.999
terbufos57, 23112.50.05-2.51.0790.998
trifluralin264, 30611.00.05-2.51.0430.998
Tab.2  Quantitation ions, retention times, and calibration curves of analytes
analyteMDL/(μg·L-1)% mean absolute rec.±% RSD a)% mean absolute rec.±% RSD b)% mean absolute rec.±% RSD c)
acetochlor0.045122±11.795±4.9102±5.1
alachlor0.060116±16.591±4.799±6.7
aldrin0.05385±19.874±4.867±4.2
atrazine0.05473±23.5105±6.892±4.6
benzo[a]pyrene0.027108±8.068±0.457±17.0
bromacil0.09987±36.292±7.787±4.0
butachlor0.073108±21.597±8.8102±10.1
chlordane, alpha0.04086±14.872±3.372±5.5
chlordane, gamma0.01986±7.079±4.471±4.1
cyanazine0.087129±17.498±3.2113±2.3
diazinon0.096108±28.3111±6.5102±5.3
dieldrin0.046106±13.885±2.081±7.0
endosulfan I0.021119±5.6107±7.1113±10.1
endosulfan II0.047137±10.992±2.092±6.7
endrin0.071142±15.9102±3.495±8.8
fenamiphos0.023138±5.394±5.488±0.7
heptachlor0.031132±7.567±3.062±2.9
heptachlor epoxide0.031104±9.593±3.884±5.2
hexachlorobenzene0.02494±8.161±4.857±4.8
lindane0.024132±5.880±5.374±6.2
methoxychlor0.04596±14.974±5.261±11.1
metolachlor0.057110±16.5104±5.6117±9.5
metribuzin0.03999±12.582±9.575±8.6
nonachlor, trans0.01573±6.575±4.867±5.0
pendimethalin0.048121±12.690±4.589±3.2
prometon0.02318±40.765±7.554±53.3
propachlor0.031108±9.1101±2.690±5.8
simazine0.039117±10.686±5.2141±17.1
terbufos0.04399±13.871±4.370±4.0
trifluralin0.022114±6.190±2.676±2. 7
Tab.3  Method sensitivity, accuracy, and precision
analyte% mean absolute recovery±% RSD a)% mean absolute recovery±% RSD b)% mean absolute recovery±% RSD c)
acetochlor84±3.583±5.576±1.4
alachlor73±4.867±1.767±1.7
aldrin46±7.754±2.449±8.4
atrazine86±5.180±6.182±2.7
benzo[a]pyrene54±2.872±26.453±19.6
bromacil78±3.4119±10.579±5.2
butachlor79±4.880±2.571±5.5
chlordane, alpha54±5.163±3.660±3.4
chlordane, gamma50±2.960±1.659±2.9
cyanazine101±2.789±1.385±4.6
diazinon98±2.7102±10.1100±2.6
dieldrin66±4.171±4.368±2.4
endosulfan I83±8.275±10.088±6.0
endosulfan II77±6.289±9.180±4.8
endrin79±4.089±4.894±5.5
fenamiphos112±5.198±3.2102±1.6
heptachlor48±1.744±15.257±1.6
heptachlor epoxide68±3.983±9.4108±11.2
hexachlorobenzene47±3.541±4.447±4.4
lindane72±3.490±4.681±4.2
methoxychlor87±5.5125±11.0106±11.1
metolachlor84±4.578±5.379±1.1
metribuzin62±1.186±6.571±4.9
nonachlor, trans49±3.459±2.656±7.0
pendimethalin86±4.478±4.876±3.3
prometon83±5.479±6.081±3.3
propachlor71±4.382±7.075±5.7
simazine67±5.867±6.160±5.2
terbufos62±1.835±8.959±5.0
trifluralin63±5.965±4.059±7.9
Tab.4  Demonstration of matrix effects based on four replicate water matrix spikes
analyte% mean absolute recovery% RSD
acetochlor93.314.2
alachlor82.013.6
aldrin56.215.8
atrazine89.817.3
benzo[a]pyrene50.928.3
bromacil90.518.7
butachlor91.617.5
chlordane, alpha61.914.5
chlordane, gamma59.114.7
cyanazine97.914.8
diazinon105.314.3
dieldrin72.313.9
endosulfan I95.218.3
endosulfan II86.216.7
endrin86.319.5
fenamiphos93.821.8
heptachlor60.917.9
heptachlor epoxide73.612.8
hexachlorobenzene49.623.1
lindane82.79.9
methoxychlor58.662.7
metolachlor90.816.6
metribuzin67.521.0
nonachlor, trans57.815.1
pendimethalin82.514.3
prometon45.057.4
propachlor82.512.4
simazine72.123.4
terbufos61.919.2
trifluralin66.814.8
Tab.5  Statistic accuracy and precision based on 58 acidified reagent water samples fortified at 1.0 μg·L over 30 days
1 Lacorte S, Guiffard I I, Fraisse D, Barceló D. Broad spectrum analysis of 109 priority compounds listed in the 76/464/CEE Council Directive using solid-phase extraction and GC/EI/MS. Analytical Chemistry , 2000, 72(7): 1430–1440
doi: 10.1021/ac991080w pmid:10763237
2 Tomkins B A, Griest W H. Determinations of N-nitrosodimethylamine at part-per-trillion concentrations in contaminated groundwaters and drinking waters featuring carbon-based membrane extraction disks. Analytical Chemistry , 1996, 68(15): 2533–2540
doi: 10.1021/ac9601573 pmid:8694259
3 Li N, Lee H K. Sample preparation based on dynamic ion-exchange solid-phase extraction for GC/MS analysis of acidic herbicides in environmental waters. Analytical Chemistry , 2000, 72(14): 3077–3084
doi: 10.1021/ac991410c pmid:10939370
4 Dombrowski T R, Wilson G S, Thurman E M. Investigation of anion-exchange and immunoaffinity particle-loaded membranes for the isolation of charged organic analytes from water. Analytical Chemistry , 1998, 70(9): 1969–1978
doi: 10.1021/ac971081t pmid:9599590
5 Winslow S D, Prakash B, Domino M M, Pepich B V, Munch D J. Determination of Selected Semivolatile Organic Compounds in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS), Method 526 Revision 1.0, United States Environmental Protection Agency , 2000, http://www.epa.gov/safewater/methods/pdfs/526.pdf
6 Price E K, Prakash B, Domino M M, Pepich B V, Munch D J. Determination of Selected Pesticides and Flame Retardants in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS), Method 527 Revision. 1.0, United States Environmental Protection Agency , 2005, http://www.epa.gov/safewater/methods/pdfs/527.pdf
7 Munch J W. Determination of Phenols in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS), Method 528 Revision 1.0, United States Environmental Protection Agency , 2000, http://www.epa.gov/nerlcwww/m_528.pdf
8 Munch J W. Determination of Explosives and Related Compounds in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS), Method 529 Revision 1.0, United States Environmental Protection Agency , 2002, http://www.epa.gov/nerlcwww/m_529.pdf
9 Munch J W, Bassett M V. Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography with Large Volume Injection and Chemical Ionization tandem mass spectrometry (MS/MS), Method 521 Version 1.0, United States Environmental Protection Agency , 2004, http://www.epa.gov/nerlcwww/m_521.pdf
10 Eichelberger J W, Behymer T D, Budde W L. Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry, Method 525.2 Revision 2.0, United States Environmental Protection Agency , 1995, http://www.epa.gov/ogwdw/methods/epachem.html
11 Quintana J B, Reemtsma T. Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry , 2004, 18(7): 765–774
doi: 10.1002/rcm.1403 pmid:15052558
12 Smith G A, Lloyd T L. Automated solid-phase extraction and sample preparation – Finding the right solution for your laboratory, LC·GC , 1998, 16 (5): S22–S31
13 Parker III T DWright D S, Rossi D T. Design and evaluation of an automated solid-phase extraction method development system for use with biological fluids. Analytical Chemistry , 1996, 68(14): 2437–2441
doi: 10.1021/ac951011r pmid:8686932
14 Hy?tyl?inen T, Riekkola M. Direct coupling of reversed-phase liquid chromatography to gas chromatography. Journal of Chromatography A , 1998, 819(1-2): 13–24
doi: 10.1016/S0021-9673(98)00539-1
15 Mol H G J, Janssen H G, Cramers C A, Vreuls J J, Brinkman U A Th. Trace level analysis of micropollutants in aqueous samples using gas chromatography with on-line sample enrichment and large volume injection. Journal of Chromatography A , 1995, 703(1-2): 277–307
doi: 10.1016/0021-9673(95)00169-N
16 Rinkema F D, Louter A J H, Brinkman U A Th. Large-volume injections in gas chromatography-atomic emission detection: an approach for trace-level detection in water analysis. Journal of Chromatography A , 1994, 678(2): 289–297
doi: 10.1016/0021-9673(94)80476-1
17 Mol H G J, Althuizen M, Janssen H G, Cramers C A, Brinkman U A Th. Environmental applications of large volume injection in capillary GC using PTV injectors. Journal of High Resolution Chromatography , 1996, 19(2): 69–79
doi: 10.1002/jhrc.1240190203
18 Engewald W, Teske J, Efer J. Programmed temperature vaporisers-based large volume injection in capillary gas chromatography. Journal of Chromatography A , 1999, 842(1-2): 143–161
doi: 10.1016/S0021-9673(99)00080-1
19 van Hout M W J, de Zeeuw R A, Franke J P, de Jong G J. Evaluation of the programmed temperature vaporiser for large-volume injection of biological samples in gas chromatography. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences , 1999, 729(1-2): 199–210
doi: 10.1016/S0378-4347(99)00159-0 pmid:10410943
20 Arnold C G, Berg M, Müller S R, Dommann U, Schwarzenbach R P. Determination of organotin compounds in water, sediments, and sewage sludge using perdeuterated internal standards, accelerated solvent extraction, and large-volume-injection GC/MS. Analytical Chemistry , 1998, 70(14): 3094–3101
doi: 10.1021/ac980184o
21 ?llers S, van Lieshout M, Janssen H, Cramers C A. Development of an interface for directly coupled solid-phase extraction and GC-MS analysis, LC·GC , 1997, 15 (9): 847–852
22 René G, van der Hoff G R, Gort S M, Baumann R A, van Zoonen P. Clean-up of some organochlorine and pyrethroid insecticides by automated solid-phase extraction cartridges coupled to capillary GC-ECD. Journal of High Resolution Chromatography , 1991, 14(7): 465–470
doi: 10.1002/jhrc.1240140709
23 Dallüge J, Hankemeier Th, Vreuls R J J, Brinkman U A Th. On-line coupling of immunoaffinity-based solid-phase extraction and gas chromatography for the determination of s-triazines in aqueous samples. Journal of Chromatography A , 1999, 830(2): 377–386
doi: 10.1016/S0021-9673(98)00932-7 pmid:10048199
24 Brinkman U A Th, Hankemeier Th, Vreuls R J J. On-line solid-Phase extraction-capillary gas chromatography for water analysis. Chemical Analysis (Warsaw) , 1995, 40: 495–509
25 Li Y, George J E, McCarty C L. Online in situ analysis of selected semi-volatile organic compounds in water by automated microscale solid-phase extraction with large-volume injection/gas chromatography/mass spectrometry. Journal of Chromatography A , 2007, 1176(1-2): 223–230
doi: 10.1016/j.chroma.2007.10.054 pmid:18036538
26 Glasser J A, Forest D L, McKee G D, Quave S A, Budde W L. Trace analyses for wastewaters. Environmental Science & Technology , 1981, 15(12): 1426–1435
doi: 10.1021/es00094a002
[1] Wei SONG, Jianguo LIU, Yongfeng NIE, . Pyrolysis behaviors of oil sludge based on TG/FTIR and PY-GC/MS[J]. Front.Environ.Sci.Eng., 2010, 4(1): 59-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed