Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 162-170    https://doi.org/10.1007/s11783-011-0313-7
RESEARCH ARTICLE
Phosphorus release potential and pollution characteristics of sediment in downstream Nansi Lake, China
Zhijian LI1,2, Qinyan YUE1(), Baoyu GAO1, Yanwen WANG1, Qing LIU3
1. Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China; 2. School of Light Chemistry and Environment Engineering, Shandong Polytechnic University, Jinan 250353, China; 3. Weishan Environment Protection Bureau, Weishan 277600, China
 Download: PDF(241 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The research aimed to evaluate present and potential phosphorous pollution due to high sedimentary phosphorus load and release from sediment, when external phosphorus was reduced in downstream Nansi Lake. Pollution load of the sediment and overlying water was investigated. Kinetics and isotherms of adsorption/release of sedimentary phosphorus were studied to determine equilibrium phosphate concentration (EPC0) and release potential. Kinetics of phosphorus adsorption on sediment and release from sediment were well described by both the pseudo-first-order rate equation and the pseudo-second-order rate equation, but more appropriate to the pseudo-second-order rate equation with the adsorption/release capacity more close to the measured values, suggesting that the processes were chemically rate controlled and dependent on adsorption capacity. Soluble reactive phosphorus (SRP) sorption isotherms on sediment were best fitted by the modified Langmuir model indicating a monolayer adsorption. By comparing EPC0 and SRP of water, the status (adsorption, releasing or in equilibrium) of sediment phosphorus could be determined. The sediments at site S1, S3, S4, S5, and S7 where the EPC0s were greater than the SRPs, had a potential to release phosphorus into the water column. However, those sediments at S9, S10, and S12, where the EPC0s were approximately equal to the SRPs, were in impermanent equilibrium with overlying water in status of phosphorus, the sediments can be likely to release phosphorus to the water column once the equilibrium was broken. Therefore, sedimentary phosphorus can be a secondary pollution source in downstream Nansi Lake.

Keywords Nansi Lake      sediment      phosphorus      release potential      equilibrium phosphate concentration     
Corresponding Author(s): YUE Qinyan,Email:qyyue@sdu.edu.cn, marine1001@gmail.com   
Issue Date: 01 April 2012
 Cite this article:   
Zhijian LI,Qinyan YUE,Baoyu GAO, et al. Phosphorus release potential and pollution characteristics of sediment in downstream Nansi Lake, China[J]. Front Envir Sci Eng, 0, (): 162-170.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0313-7
https://academic.hep.com.cn/fese/EN/Y0/V/I/162
Fig.1  Sketch of sediment and water sampling sites
Zhaoyang LakeWeishan Lakeinflow rivers
averagerangeaveragerangeaveragerange
TP/(mg·L-1)0.150.085-0.2610.200.036-0.7310.750.398-1.367
TDP/(mg·L-1)0.060.04-0.0930.150.019-0.4180.410.111-1.03
SRP/(mg·L-1)0.040.023-0.0510.060.005-0.1880.340.065-0.837
DO/(mg·L-1)11.4510.99-12.9911.8010.28-12.4810.915.84-17.75
COD/(mg·L-1)32.3830.2-34.034.329.6-40.936.9825.4-61.2
conductivity/(μS·cm-1)1084.331079-10951030.86987-10901287.201093-1563
temperature/°C12.0311.9-12.212.9312.1-13.714.0812.98-16.2
pH8.638.58-8.718.728.19-9.148.117.66-8.76
Tab.1  Chemical and physical characteristics of overlying water in downstream Nansi Lake
sample sitesTP (winter in 2007)TP (summer in 2008)SRP (summer in 2008)
sediment/(mg·kg-1)overlying water/(mg·L-1)sediment/(mg·kg-1)overlying water/(mg·L-1)overlying water/(mg·L-1)
S1510.690.143624.990.1120.127
S2526.931.150502.080.7470.030
S3658.320.107629.220.0790.003
S4630.190.019424.900.2150.009
S5415.170.059441.580.1170.005
S6554.530.504532.860.9600.44
S7539.670.111432.800.1470.006
S8484.090.031460.120.0340.487
S9614.070.036601.250.0900.005
S10582.260.280670.060.0900.004
S11595.310.105629.830.0790.208
S12526.540.105564.470.0830.003
minimum415.170.019424.900.0340.003
maximum658.321.150670.060.9600.487
mean553.150.221542.850.2290.111
Tab.2  Total phosphorus level in surface sediment and overlying water in downstream Nansi Lake
Fig.2  Phosphorus adsorption and release kinetics on the sediment
kinetics equationinitial P concentration /(mg·kg-1)Qe/(mg·kg-1)k1/h-1k2/(k·mg-1·h-1)R2
pseudo-first-order2 (adsorption)132.51.10-0.9836
pseudo-first-order0 (release)-3.3740.252-0.9999
pseudo-second-order2141.04-0.010.9986
pseudo-second-order0-1.74-0.280.9971
Tab.3  Adsorption and release kinetics constants with kinetics models (≤0.05)
Fig.3  Adsorption isotherm curve fitting by modified Langmuir model
siteLangmuirFreundlichliner model
kL/(L·mg-1)b/(mg·kg-1)a/(mg·kg-1)R2kFnR2EPC0/(mg·L-1)m/(L·kg-1)Ni/(mg·kg-1)R2
S73.08178.8213.230.98168.650.770.95-0.02197.22-3.40.93
S816.08236.2154.300.99434.330.0770.920.01595.67-7.870.88
S111.91206.2315.000.98173.830.9960.940.02186.323.370.94
Tab.4  Adsorption isotherm parameters fitting by modified Langmuir, Freundlich, and liner model (≤0.05)
Fig.4  Relationship between SRP and EPC at 12 sample sites
1 Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine ecosystems: A review of recent evidence on the effects of enrichment. Limnology and Oceanography , 1988, 33(4_part_2): 796–822
doi: 10.4319/lo.1988.33.4_part_2.0796
2 Grobbelaar J U, House W A. Phosphorus as a limiting resource in inland waters: interactions with nitrogen. In: Tiessen H, ed. Phosphorus in the Global Environment. Scientific Committee on Problems of the Environment. Report No. 54 . New York: John Wiley and Sons, 1995, 476
3 Jarvie H, Mortimer R, Palmer-Felgate E, Quinton K, Harman S, Carbo P. Measurement of soluble reactive phosphorus concentration profiles and fluxes in river-bed sediments using DET gel probes. Journal of Hydrology (Amsterdam) , 2008, 350(3–4): 261–273
doi: 10.1016/j.jhydrol.2007.10.041
4 Zhou Q, Gibson C E, Zhu Y M. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere , 2001, 42(2): 221–225
doi: 10.1016/S0045-6535(00)00129-6 pmid:11237302
5 Phillips G, Jackson R, Bennett C, Chilvers A. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia , 1994, 275–276(1): 445–456
doi: 10.1007/BF00026733
6 Jones G J, Poplawski W. Understanding and management of cyanobacterial blooms in sub-tropical reservoirs of Queensland, Australia. Water Science and Technology , 1998, 37(2): 161–168
doi: 10.1016/S0273-1223(98)00020-1
7 Baudo R, Giesy J P, Muntau H. Sediments-chemistry and Toxicity of In-place Pollutants. Ann Arbor: Lewis Publishers Inc, 1990, 405
8 McManus J, Berelson W M, Coale K H, Johnson K S, Kilgore T E. Phosphorus regeneration in continental margin sediments. Geochimica et Cosmochimica Acta , 1997, 61(14): 2891–2907
doi: 10.1016/S0016-7037(97)00138-5
9 Wang H, Appan A, Gulliver J S. Modeling of phosphorus dynamics in aquatic sediments: I—model development. Water Research , 2003, 37(16): 3928–3938
doi: 10.1016/S0043-1354(03)00304-X pmid:12909112
10 Smith D R, Warnemuende E A, Haggard B E, Huang C. Changes in sediment–water column phosphorus interactions following sediment disturbance. Ecological Engineering , 2006, 27(1): 71–78
doi: 10.1016/j.ecoleng.2005.10.013
11 State Environment Protection Adiministration, State Administration for Quality Supervision and Inspection and Quarantine, Environmental quality standards for surface water (GB3838-2002). Beijing: China Environmental Science Press, 2002: 3–6
12 Li Y H, Yang L Y, Liu E F, Guo D W. Evaluation of eutrophic levels in Nansi Lakes and analysis of causes. Journal of University of Jinan (Sci & Tech) , 2010, 24 (2): 212–215 (in Chinese)
13 Yang L Y, Shen J, Liu E F, Ji J F. Characteristics of nutrients distribution from recent sediment in Lake Nansihu. Journal of Lake Sciences , 2007, 19(4): 390–396 (in Chinese with English summary)
14 Shen J, Zhang Z L, Yang L Y, Sun Q Y. Nansi Lake: Research of Environment and Resource. Beijing: Seism Press, 2008: 23–75 (in Chinese)
15 Wang Y W, Yue Q Y, Liu Q, Li Z J. Gao B Y. Phosphorus species and distribution characteristics in Sediment of Nansi Lake. China Environmental Science , 2009, 29(2): 955–960 (in Chinese)
16 Zhang Z B, Zhang X Y, Zhang B, Li M, Huang Q H, Li J H. Distribution of phosphorus species in the sediment from Weishanhu district in Lake Nansihu. Environmental Science , 2009, 30(5): 1345–1350 (in Chinese)
pmid:19558099
17 Moss B, Balls H, Irvine K, Stansfield J. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment. Journal of Applied Ecology , 1986, 23(2): 391–414
doi: 10.2307/2404025
18 House W A, Denison F H. Nutrient dynamics in a lowland stream impacted by sewage effluent: Great Ouse, England. The Science of the Total Environment , 1997, 205(1): 25–49
doi: 10.1016/S0048-9697(97)00086-7 pmid:9352669
19 Gardner C M K, Cooper D M, Hughes S. Phosphorus in soils and field drainage water in the Thame catchment, UK. The Science of the Total Environment , 2002, 282-283(1–3): 253–262
doi: 10.1016/S0048-9697(01)00913-5 pmid:11852907
20 Jarvie H, Juergens M, Williams R, Neal C, Davies J, Barrett C, White J. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. Journal of Hydrology (Amsterdam) , 2005, 304(1–4): 51–74
doi: 10.1016/j.jhydrol.2004.10.002
21 Taylor A W, Kunishi H M. Phosphate equilibration on stream sediment and soil in a watershed draining an agricultural region. Journal of Agricultural and Food Chemistry , 1971, 19(5): 827–831
doi: 10.1021/jf60177a061
22 House W A. Geochemical cycling of phosphorus in rivers. Applied Geochemistry , 2003, 18(5): 739–748
doi: 10.1016/S0883-2927(02)00158-0
23 National E P A. P.R.C. Standard Methods for Monitoring and Analysis of Water and Wastewater, 4th ed., Beijing: China Environmental Science Press, 2002: 243–249, 435–438 (in Chinese).
24 Detenbeck N E, Brezonik P L. Phosphorus sorption by sediments from a soft-water seepage lake: an evaluation of kinetic and equilibrium models. Environmental Science & Technology , 1991, 25(3): 395–403
doi: 10.1021/es00015a003
25 Wang S, Jin X, Zhao H, Zhou X, Wu F. Effects of organic matter on phosphorus release kinetics in different trophic lake sediments and application of transition state theory. Journal of Environmental Management , 2008, 88(4): 845–852
doi: 10.1016/j.jenvman.2007.04.006 pmid:17590261
26 Wang S, Jin X, Bu Q, Jiao L, Wu F. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 316(1–3): 245–252
doi: 10.1016/j.colsurfa.2007.09.007
27 Wang S, Jin X, Zhao H, Wu F. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions. Journal of Hazardous Materials , 2009, 161(2–3): 1551–1559
doi: 10.1016/j.jhazmat.2008.05.004 pmid:18555597
28 Li Y, Gao B, Wu T, Chen W, Li X, Wang B. Adsorption kinetics for removal of thiocyanate from aqueous solution by calcined hydrotalcite. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 325(1–2): 38–43
doi: 10.1016/j.colsurfa.2008.04.046
29 Sa? Y, Aktay Y. Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochemistry , 2000, 36(1–2): 157–173
doi: 10.1016/S0032-9592(00)00200-4
30 Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling. Biochemical Engineering Journal , 2001, 7(1): 79–84
doi: 10.1016/S1369-703X(00)00098-X pmid:11150798
31 Benaissa H, Elouchdi M A. Removal of copper ions from aqueous solutions by dried sunflower leaves. Chemical Engineering and Processing , 2007, 46(7): 614–622
doi: 10.1016/j.cep.2006.08.006
32 Ho Y S, McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal , 1998, 70(2): 115–124
doi: 10.1016/S0923-0467(98)00076-1
33 House W A, Denison F H, Armitage P D. Comparison of the uptake of inorganic phosphorus to suspended and stream bed sediment. Water Research , 1995, 29(3): 767–779
doi: 10.1016/0043-1354(94)00237-2
34 Drever J I. The Geochemistry of Natural Waters. 3rd ed. Upper Saddle River: Prentice-Hall, 1997, 436
35 Zhang L Y, Wang S R, Chu Z S, Yang S W, Jin X C, Bao L, Zhang F L, Ni Z K. Distribution characteristics of phosphorus in sediment of Yanghe Reservoir and in soil of its basin. China Environmental Science , 2010, 30(11): 1529–1536
36 Yuan H Z, Shen J, Liu E F, Wang J J, Meng X H. Space distribution characteristics and diversity analysis of phosphorus from overlying water and surface sediments in Taihu Lake. Environmental Science , 2010, 31(4): 954–960 (in Chinese)
pmid:20527176
37 Jin X C, Tu Q Y. Investigation Method for the Lake Eutrophication. 2nd ed. Beijing: Chinese Environmental Science Publication, 1990, 162–164
38 Zhou A, Tang H, Wang D. Phosphorus adsorption on natural sediments: modeling and effects of pH and sediment composition. Water Research , 2005, 39(7): 1245–1254
doi: 10.1016/j.watres.2005.01.026 pmid:15862324
39 Tian J R, Zhou P J. Phosphorus fractions of floodplain sediments and phosphorus exchange on the sediment–water interface in the lower reaches of the Han River in China. Ecological Engineering , 2007, 30(3): 264–270
doi: 10.1016/j.ecoleng.2007.01.006
40 Ho Y S, Wang C C. Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Process Biochemistry , 2004, 39(6): 761–763
doi: 10.1016/S0032-9592(03)00184-5
41 Ofomaja A E, Naidoo E B, Modise S J. Dynamic studies and pseudo-second order modeling of copper(II) biosorption onto pine cone powder. Desalination , 2010, 251(1–3): 112–122
doi: 10.1016/j.desal.2009.09.135
42 Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research , 2000, 34(3): 735–742
doi: 10.1016/S0043-1354(99)00232-8
43 Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry , 1999, 34(5): 451–465
doi: 10.1016/S0032-9592(98)00112-5
44 Wang S, Jin X, Zhao H, Zhou X, Wu F. Effect of organic matter on the sorption of dissolved organic and inorganic phosphorus in lake sediments. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2007, 297(1–3): 154–162
doi: 10.1016/j.colsurfa.2006.10.040
45 An W C, Li X M. Phosphate adsorption characteristics at the sediment–water interface and phosphorus fractions in Nansi Lake, China, and its main inflow rivers. Environmental Monitoring and Assessment , 2009, 148(1–4): 173–184
doi: 10.1007/s10661-007-0149-6 pmid:18344009
46 Liu Q. Study on N and P release of Nansi Lake and its inflow rivers sediment and its Influencing Factors. Shandong University Master’s Thesis , 2009, 13–24
47 Lilienfein J, Qualls R G, Uselman S M, Bridgham S D. Adsorption of dissolved organic and inorganic phosphorus in soils of a weathering chronosequence. Soil Science Society of America Journal , 2004, 68(2): 620–628
doi: 10.2136/sssaj2004.0620
48 Li Y, Yue Q, Gao B. Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid. Journal of Hazardous Materials , 2010, 178(1–3): 455–461
doi: 10.1016/j.jhazmat.2010.01.103 pmid:20149528
49 Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science , 2004, 278(1): 18–25
doi: 10.1016/j.jcis.2004.05.029 pmid:15313633
50 Klotz R L. Sediment control of soluble reactive phosphorus in Hoxie Gorge Creek, New York. Canadian Journal of Fisheries and Aquatic Sciences , 1988, 45(11): 2026–2034
doi: 10.1139/f88-236
51 Haggard B E, Stanley E H, Hyler R. Sediment–phosphorus relationships in three northcentral Oklahoma streams. Transactions of the ASABE. The American Society of Agricultural and Biological Engineers , 1999, 42(6): 1709–1714
[1] Zhongyao Liang, Yaoyang Xu, Gang Zhao, Wentao Lu, Zhenghui Fu, Shuhang Wang, Tyler Wagner. Approaching the upper boundary of driver-response relationships: identifying factors using a novel framework integrating quantile regression with interpretable machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(6): 76-.
[2] Yunxue Xia, Dong Qiu, Zhong Lyv, Jianshuai Zhang, Narendra Singh, Kaimin Shih, Yuanyuan Tang. Controlled sintering for cadmium stabilization by beneficially using the dredged river sediment[J]. Front. Environ. Sci. Eng., 2023, 17(5): 61-.
[3] Mengke Zhu, Bocong Huang, Shenghao Ai, Zongyang Liu, Xiaoyan Ai, Meihua Sheng, Yingwei Ai. The distribution and availability of phosphorus fractions in restored cut slopes soil aggregates: a case study of subalpine road, Southwest China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 42-.
[4] Wenwen Gong, Yu Xing, Lihua Han, Anxiang Lu, Han Qu, Li Xu. Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China[J]. Front. Environ. Sci. Eng., 2022, 16(9): 113-.
[5] Zhenming Zhou, Canyang Lin, Shuwen Li, Shupo Liu, Fei Li, Baoling Yuan. Four kinds of capping materials for controlling phosphorus and nitrogen release from contaminated sediment using a static simulation experiment[J]. Front. Environ. Sci. Eng., 2022, 16(3): 29-.
[6] Kun Li, Tingming Ye, Wang Zhang, Jianfeng Peng, Yaohui Bai, Weixiao Qi, Huijuan Liu. Microbial responses to the use of NaClO in sediment treatment[J]. Front. Environ. Sci. Eng., 2022, 16(2): 17-.
[7] Keying Song, Shufeng Zhu, Yun Lu, Guohua Dao, Yinhu Wu, Zhuo Chen, Shengnan Wang, Junhan Liu, Wenguang Zhou, Hong-Ying Hu. Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom control in reclaimed water landscape[J]. Front. Environ. Sci. Eng., 2022, 16(10): 129-.
[8] K. Dhineka, M. Sambandam, S. K. Sivadas, T. Kaviarasan, Umakanta Pradhan, Mehmuna Begum, Pravakar Mishra, M. V. Ramana Murthy. Characterization and seasonal distribution of microplastics in the nearshore sediments of the south-east coast of India, Bay of Bengal[J]. Front. Environ. Sci. Eng., 2022, 16(1): 10-.
[9] Farasat Ali, Ghulam Jilani, Leilei Bai, Chunliu Wang, Linqi Tian, Helong Jiang. Effects of previous drying of sediment on root functional traits and rhizoperformance of emerged macrophytes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 134-.
[10] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[11] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[12] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[13] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[14] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[15] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed