Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (2) : 224-230    https://doi.org/10.1007/s11783-011-0314-6
RESEARCH ARTICLE
Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors
Hongjing LI, Mengli HAO, Jingxian LIU, Chen CHEN, Zhengqiu FAN, Xiangrong WANG()
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
 Download: PDF(150 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH4+-N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH4+-N and organic matter were pH 7.5>pH 8.5>pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and comparison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.

Keywords pH      biological degradation      alga-lysing bacteria      sequencing batch biofilm reactor (SBBR)      16S rRNA      Bacillus sp     
Corresponding Author(s): WANG Xiangrong,Email:lihongjing2371@163.com   
Issue Date: 01 April 2012
 Cite this article:   
Hongjing LI,Mengli HAO,Chen CHEN, et al. Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors[J]. Front Envir Sci Eng, 2012, 6(2): 224-230.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0314-6
https://academic.hep.com.cn/fese/EN/Y2012/V6/I2/224
Fig.1  Variations of chlorophyll concentration under different pH conditions
bioreactorsaerobic time
beginning1 h2 h3 h4 h5 h6 h
conductivity/(μS·cm-1)
SBBR1 (pH6.5)201 ± 5.2320 ± 9.6330 ± 10.1332 ± 9.9331 ± 9.9332 ± 10.0330 ± 10.8
SBBR2 (pH7.5)195 ± 4.9315 ± 8.8324 ± 9.8322 ± 10.2320 ± 8.6321 ± 9.2322 ± 10.1
SBBR3 (pH8.5)209 ± 5.0326 ± 9.3337 ± 9.7338 ± 10.5337 ± 10.6338 ± 10.8335 ± 11.0
SBBR1 (blank)205 ± 5.1205 ± 5.8210 ± 6.0204 ± 5.5208 ± 5.9207 ± 5.6210 ± 6.0
SBBR2 (blank)200 ± 5.0195 ± 5.7201 ± 5.9199 ± 5.8207 ± 6.2205 ± 5.5205 ± 5.6
SBBR3 (blank)198 ± 5.5200 ± 5.6195 ± 6.2190 ± 6.1202 ± 6.0205 ± 5.4209 ± 5.8
Tab.1  Conductivity of different aerobic time in three SBBRs and three blanks ( = 3)
itemchlorophyll a removal efficiency/%NH4+-N removal efficiency/%CODMn removal efficiency/%
SBBR175.9 ± 1.310030.6 ± 0.8
SBBR283.6 ± 2.310035.8 ± 1.1
SBBR378.3 ± 2.110033.5 ± 1.2
Tab.2  Comparison of chlorophyll , and COD removal efficiency in three SBBRs ( = 3)
Fig.2  Pattern of strain HM-01 under the light microscope
physiologic and biochemical reactioncharacteristics
anaerobic growth +
catalase +
acid productionglucose +
l-arabinose-
d-mannitol-
d-xylose-
glucose aerogenesis-
nitrate deoxidizes as nitrite +
growth2% NaCl +
5% NaCl +
7% NaCl +
nutrition broth of pH 6.8 +
sabourand dextroseculture medium of pH 5.7 +
30°C +
40°C +
50°C-
Tab.3  Physiologic and biochemical characteristics of the HM-01 bacterium
Fig.3  Growth curve of the HM-01 bacterium
Fig.4  Amplification of HM-01 16S rDNA. The marker and the molecular weights are 5.0, 3.0, 2.0, 1.0, 0.75, 0.50, 0.25, and 0.10 kb
1 Hargensheimer E E, Watson S B. Drinking water treatment options for taste and odor control. Water Research , 1996, 30(6): 1423-1430
doi: 10.1016/0043-1354(96)00027-9
2 Graham N J D, Wardlaw V E, Perry R, Jiang J Q. The significance of algae as trihalomethane precursors. Water Science and Technology , 1998, 37(2): 83-89
doi: 10.1016/S0273-1223(98)00013-4
3 MD Z B A. Masahiro O, Hiroaki F, Shinichiro O. Direct and indirect inctivation of Microcystis aerugiosa by UV-radiation. Water Research , 2001, 35(4): 1008-1014 11235865
doi: 10.1016/S0043-1354(00)00357-2
4 Plummer J D, Edzwald J K. Effect of ozone on disinfection by-product formation of algae. Water Science and Technology , 1998, 37(2): 49-55
doi: 10.1016/S0273-1223(98)00009-2
5 Wang S F. Removal methods of algae in lake and reservoir. Technique of Prevention and Cure on Pollution , 2000, 13(1): 23-25 (in Chinese)
6 Imai I, Ishida K, Sakaguchi K, Hata Y. Algicidal marine bacteria isolated from northern Hiroshima Bay. Japan Fish Science , 1995, 61(1): 628-636
7 Kato J, Amie J, Murata Y, Kuroda A, Mitsutani A, Ohtake H. Development of a genetic transformation system for an alga-lysing bacterium. Applied and Environmental Microbiology , 1998, 64(6): 2061-2064
pmid:9603814
8 Lee S O, Kato J, Takiguchi N, Kuroda A, Ikeda T, Mitsutani A, Ohtake H. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Applied and Environmental Microbiology , 2000, 66(10): 4334-4339
doi: 10.1128/AEM.66.10.4334-4339.2000 pmid:11010878
9 Imamura N, Motoike I, Shimada N, Nishikori M, Morisaki H, Fukami H. An efficient screening approach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosystem. The Journal of antibiotics , 2001, 54(7): 582-587
pmid:11560377
10 Wu G, Xi Y, Zhao Y J. The latest developpment of research on alga-lysing bacteria. Research of Environmental Sciences , 2002, 15(5): 43-46 (in Chinese)
11 Mu R M, Fan Z Q, Pei H Y, Yuan X L, Liu S X, Wang X R. Isolation and algae-lysing characteristics of the algicidal bacterium B5. Journal of Environmental Sciences , 2007, 19(11): 1336-1340 (in Chinese)
doi: 10.1016/S1001-0742(07)60218-6 pmid:18232228
12 Mu R M, He Y J, Liu S X, Wang X R, Fan Z Q. The Algicidal characteristics of one algae-lysing FDT5 bacterium on Microcystis aeruginosa. Geomicrobiology Journal , 2009, 26(7): 516-521
doi: 10.1080/01490450903061622
13 Shi L M, Cai Y F, Yang H L, Xing P, Li P F, Kong L D, Kong F X. Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria. Journal of Environmental Sciences , 2009, 21(11): 1581-1590 (in Chinese)
doi: 10.1016/S1001-0742(08)62459-6 pmid:20108694
14 Pei H Y, Hu W R. Study on algae removal by immobilized biosystem on sponge. Journal of Ocean University , 2006, 5(4): 327-332
doi: 10.1007/s11802-006-0024-z
15 Pei H Y, Hu W R, Mu R M, Li X C. Alga-lysing bioreactor and dominant bacteria strain. Journal of Environmental Sciences , 2007, 19(5): 546-552 (in Chinese)
doi: 10.1016/S1001-0742(07)60091-6 pmid:17915682
16 Ji R P, Lu X W, Li X N, Pu Y P. Biological degradation of algae and microcystins by microbial enrichment on artificial media. Ecological Engineering , 2009, 35(11): 1584-1588
doi: 10.1016/j.ecoleng.2008.12.031
17 Sneath P H A, Mair N S, Sharpe M E, Holt J G. Bergey’s Manual of Systematic Bacteriology (volume 2). Baltimore: Williams & Wilkins, 1986
18 Holt J G, Krieg N R, Sneath P H A, Staley J T, Williams S T. Bergey’s Manual of Determinative Bacteriology. 9th, ed. Baltimore: Williams & Wilkins, 1994
19 Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research , 1997, 25(24): 4876-4882
doi: 10.1093/nar/25.24.4876 pmid:9396791
20 APHA. Standard Methods for the Examination of Water and Wastewater. 20th, ed.Washington DC: American Public Health Association, 1998
21 Nakamura N, Nakano K, Sugiura N, Matsumura M. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake. Journal of Bioscience and Bioengineering , 2003, 95(2): 179-184
pmid:16233388
22 Liang W Y, Qu J, Chen L B, Liu H, Lei P J. Inactivation of Microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti/RuO2 electrodes. Environmental Science & Technology , 2005, 39(12): 4633-4639
doi: 10.1021/es048382m pmid:16047803
23 Wu J, Liu H Q, Wu S D. Environment and Microbe. Beijing: Environmental Science Press, 1987
24 Carlson G, Silverstein J. Effect of ozonation on sorption of natural organic matter by biofilm. Water Research , 1997, 31(10): 2467-2478
doi: 10.1016/S0043-1354(97)00106-1
25 Wu W Z, Wang Z S. Effects on the algae removal by different biological contact oxidation process and their mechanisms. Acta Science Circumstantiae , 2001, 21(3): 277-281 (in Chinese)
26 Kapdan I, Kargi F. Simultaneous biodegradation and adsorption of textile dyestuff in an activated sludge unit. Process Biochemistry , 2002, 37(9): 973-981
doi: 10.1016/S0032-9592(01)00309-0
27 Zilouei H, Guieysse B, Mattiasson B. Biological degradation of chlorophenols in packed-bed bioreactors using mixed bacterial consortia. Process Biochemistry , 2006, 41(5): 1083-1089
doi: 10.1016/j.procbio.2005.11.019
28 Imai I, Ishida K, Hata Y. Killing of marine phytoplankton by a gliding bacterium Cytophga sp. isolated from the coastal sea of Japan. Marine Biology , 1993, 116(4): 527-532
doi: 10.1007/BF00355470
[1] Shiguan Yang, Xinrui Fan, Ji Liu, Wei Zhao, Bin Hu, Qiang Lu. Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study[J]. Front. Environ. Sci. Eng., 2021, 15(6): 120-.
[2] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[3] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[4] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[5] Shan Xue, Shaobin Sun, Weihua Qing, Taobo Huang, Wen Liu, Changqing Liu, Hong Yao, Wen Zhang. Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 95-.
[6] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[7] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[8] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[9] Xinzheng Li, Zhiming Li, Zhihui Xing, Zhimin Song, Bei Ye, Zhengming Wang, Qianyuan Wu. UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide[J]. Front. Environ. Sci. Eng., 2021, 15(5): 85-.
[10] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[11] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[12] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[13] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[14] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[15] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed