Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (2) : 175-185    https://doi.org/10.1007/s11783-011-0320-8
RESEARCH ARTICLE
Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium
Pinjing HE(), Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO
Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(422 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To understand the influence patterns and interactions of three important environmental factors, i.e. soil water content, oxygen concentration, and ammonium addition, on methane oxidation, the soils from landfill cover layers were incubated under full factorial parameter settings. In addition to the methane oxidation rate, the quantities and community structures of methanotrophs were analyzed to determine the methane oxidation capacity of the soils. Canonical correspondence analysis was utilized to distinguish the important impact factors. Water content was found to be the most important factor influencing the methane oxidation rate and Type II methanotrophs, and the optimum value was 15% (w/w), which induced methane oxidation rates 10- and 6- times greater than those observed at 5% (w/w) and 20% (w/w), respectively. Ambient oxygen conditions were more suitable for methane oxidation than 3% oxygen. The addition of 100? mg-N·kgdrysoil-1 of ammonium induced different effects on methane oxidation capacity when conducted at low or high water content. With regard to the methanotrophs, Type II was sensitive to the changes of water content, while Type I was influenced by oxygen content. Furthermore, the methanotrophic acidophile, Verrucomicrobia, was detected in soils with a pH of 4.9, which extended their known living environments.

Keywords quantitative polymerase chain reaction (PCR)      denaturing gradient gel electrophoresis (DGGE)      principal component analysis (PCA)      canonical correspondence analysis (CCA)     
Corresponding Author(s): HE Pinjing,Email:solidwaste@tongji.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Pinjing HE,Na YANG,Wenjuan FANG, et al. Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium[J]. Front Envir Sci Eng Chin, 2011, 5(2): 175-185.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0320-8
https://academic.hep.com.cn/fese/EN/Y2011/V5/I2/175
experiment No.123456789101112
water content/%(w/w)51520515205152051520
O2 concentration/%(v/v)212121212121333333
NH4+addition/mgN·kgdrysoil-1000100100100000100100100
Tab.1  Full factorial experiment design
Fig.1  Changes in the CH oxidation rate with time for all soil samples (data are shown as the mean±standard deviation of = 2): (a) ambient oxygen content, and (b) 3% oxygen content
Fig.2  DGGE analysis of Type I targeting 16S rRNA gene fragments generated from ambient O concentration samples: (a) DGGE profile and Shannon index of each lane (only named bands were used to calculate the index) shown below, every lane represents the sample at the conditions illustrated on top of the lane; (b) PCA of DGGE profiles, the numbers before “-” represent the environmental NO., while 30 and 60 after “-” represent a sampling time of 30 days and 60 days, respectively
Fig.3  Neighbor-joining phylogenetic tree of Type I 16S rRNA gene sequences (493 bp) from incubated landfill cover soil. The bar represents 0.02 substitutions per nucleotide position
Fig.4  DGGE analysis of Type II targeting 16S rRNA gene fragments. (a) DGGE profile of the soil samples with ambient O content; (b): DGGE profile of soil samples with a 3% O content, Shannon index of each lane (only named bands were used to calculate the index) were shown below (a) and (b), each lane represents the sample under the conditions illustrated on top of the lane; (c) PCA of DGGE profiles, the numbers before “-” represents the environmental No., while 30 and 60 after “-” represent sampling times of 30 days and 60 days, respectively
experiment No.123456789101112
30 dType Ia)0.68.117.30.17.24.53.10.92.04.60.33.3
Type IIa)1.620.94.80.515.415.11.20.21.70.92.20.4
Type II/Type Ib)2.62.60.34.02.13.40.40.20.80.26.90.1
60 dType I0.11.63.90.10.31.30.71.62.70.36.80.9
Type II4.38.94.12.92.520.02.12.01.40.611.31.3
Type II/Type I40.35.51.041.89.015.43.01.30.51.81.61.5
Tab.2  Abundance and copy ratios of two types of methanotrophs in different treatments
Fig.5  CCA of the environmental factors and (a) methane oxidation rate patterns along with time; (b) DGGE profiles of Type I methanotrophs; (c) DGGE profiles of Type II methanotrophs. The numbers before “-” represents the environmental No., while 30 and 60 after “-” represent sampling times of 30 days and 60 days, respectively.
1 Mikaloff Fletcher S E, Tans P P, Bruhwiler L M, Miller J B, Heimann M (2004). CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochem Cycles , 18(4): GB4004.1–GB4004.17
doi: 10.1029/2004GB002223
2 Hanson R S, Hanson T E (1996). Methanotrophic bacteria. Microbiol Rev , 60(2): 439–471
pmid:8801441
3 Shao L M, Zhong J S, Zhang H H, He P J (2009). CH4 emissions from municipal solid waste landfills in spring and summer and influencing factors analysis. Research of Environmental Sciences (in Chinese), 22: 83–88
doi: 10.1016/S1001-0742(09)60015-2
4 Bodelier P L E, Hahn A P, Arth I R, Frenzel P (2000). Effects of ammonium-based fertilisation on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry , 51(3): 225–257
doi: 10.1023/A:1006438802362
5 Bodelier P L E, Meima-Franke M, Zwart G, Laanbroek H J (2005). New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiol Ecol , 52(2): 163–174
doi: 10.1016/j.femsec.2004.11.004 pmid:16329903
6 Bodelier P L E, Roslev P, Henckel T, Frenzel P (2000). Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature , 403(6768): 421–424
doi: 10.1038/35000193 pmid:10667792
7 De Visscher A, Schippers M, van Cleemput O (2001). Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors. Biol Fertil Soils , 33(3): 231–237
doi: 10.1007/s003740000313
8 Mohanty S R, Bodelier P L E, Floris V, Conrad R (2006). Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol , 72(2): 1346–1354
doi: 10.1128/AEM.72.2.1346-1354.2006 pmid:16461686
9 Saari A, Rinnan R, Martikainen P J (2004). Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium. Soil Biol Biochem , 36(7): 1037–1046
doi: 10.1016/j.soilbio.2004.01.018
10 Seghers D, Top E M, Reheul D, Bulcke R, Boeckx P, Verstraete W, Siciliano S D (2003). Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. Environ Microbiol , 5(10): 867–877
doi: 10.1046/j.1462-2920.2003.00477.x pmid:14510840
11 Yu T, He P J, Lü F, Shao L M (2009). Mediating N2O emissions from municipal solid waste landfills: Impacts of landfill operating conditions on community structure of ammonia-oxidizing bacteria in cover soils. Ecol Eng , 35(5): 882–889
doi: 10.1016/j.ecoleng.2008.12.025
12 Wise M G, McArthur J V, Shimkets L J (1999). Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol , 65(11): 4887–4897
pmid:10543800
13 Weisburg W G, Barns S M, Pelletier D A, Lane D J (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol , 173(2): 697–703
pmid:1987160
14 Muyzer G, de Waal E C, Uitterlinden A G (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol , 59(3): 695–700
pmid:7683183
15 Guo M, He P J, Lü F, Shao L M (2008). Type II methanotrophs community stucture in the cover soils of landfill. China Environ Sci , 28(6): 536–541 (in Chinese)
16 Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell J C, Bodrossy L (2004). Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol , 6(4): 347–363
doi: 10.1111/j.1462-2920.2004.00582.x pmid:15008813
17 Stralis Pavesea N, Bodrossya L, Reichenauerb TG, Weilhartera A, Sessitsch A (2006). 16S rRNA based T-RFLP analysis of methane oxidising bacteria - Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl Soil Ecol , 31(3): 251–266
doi: 10.1016/j.apsoil.2005.05.006
18 Cébron A, Bodrossy L, Chen Y, Singer A C, Thompson I P, Prosser J I, Murrell J C (2007). Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol Ecol , 62(1): 12–23 17714486
doi: 10.1111/j.1574-6941.2007.00368.x
19 Dunfield P F, Yuryev A, Senin P, Smirnova A V, Stott M B, Hou S, Ly B, Saw J H, Zhou Z, Ren Y, Wang J, Mountain B W, Crowe M A, Weatherby T M, Bodelier P L E, Liesack W, Feng L, Wang L, Alam M (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature , 450(7171): 879–882
doi: 10.1038/nature06411 pmid:18004300
20 Islam T, Jensen S, Reigstad L J, Larsen O, Birkeland N K (2008). Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA , 105(1): 300–304
doi: 10.1073/pnas.0704162105 pmid:18172218
21 Pol A, Heijmans K, Harhangi H R, Tedesco D, Jetten M S M, Op den Camp H J M (2007). Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature , 450(7171): 874–878
doi: 10.1038/nature06222 pmid:18004305
22 Boeckx P, van Cleemput O (1996). Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature, and nitrogen-turnover. J Environ Qual , 25(1): 178–183
doi: 10.2134/jeq1996.00472425002500010023x
23 Whalen S C, Reeburgh W S, Sandbeck K A (1990). Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol , 56(11): 3405–3411
pmid:16348346
24 D?rr H, Katru L, Levin I (1993). Soil texture parameterization of the methane uptake in aerated soils. Chemosphere , 26(1-4): 697–713
doi: 10.1016/0045-6535(93)90454-D
25 Bender M, Conrad R (1995). Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem , 27(12): 1517–1527
doi: 10.1016/0038-0717(95)00104-M
26 Megraw S R, Konwles R (1987). Methane production and consumption in a cultivated humisol. Biol Fertil Soils , 5(1): 56–60
doi: 10.1007/BF00264347
27 Czepiel P M, Mosher B, Crill P M, Harriss R C (1996). Quantifying the effect of oxidation on landfill methane emissions. Journal of Geophysical Research-Atmospheres , 101(D11): 16721–16729
doi: 10.1029/96JD00222
28 Graham D W, Chaudhary J A, Hanson R S, Arnold R G (1993). Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb Ecol , 25(1): 1–17
doi: 10.1007/BF00182126
29 Schnell S, King G M (1996). Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microbiol , 62(9): 3203–3209
pmid:16535395
30 Mancinelli R L (1995). The regulation of methane oxidation in soil. Annu Rev Microbiol , 49(1): 581–605
doi: 10.1146/annurev.mi.49.100195.003053 pmid:8561473
[1] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[2] Chuanjia JIANG, Pengyi ZHANG. Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors[J]. Front Envir Sci Eng, 2012, 6(2): 184-194.
[3] Dawen GAO, Yu TAO. Current molecular biologic techniques for characterizing environmental microbial community[J]. Front Envir Sci Eng, 2012, 6(1): 82-97.
[4] Qingmei YAN, Xuxiang ZHANG, Tong ZHANG, Herbert H P FANG. Seasonal microbial community shift in a saline sewage treatment plant[J]. Front Envir Sci Eng Chin, 2011, 5(1): 40-47.
[5] WANG Jianfang, ZHAO Qingliang, JIN Wenbiao, LIN Jikan. Mechanism on minimization of excess sludge in oxic-settling-anaerobic (OSA) process[J]. Front.Environ.Sci.Eng., 2008, 2(1): 36-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed