Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (4) : 519-525    https://doi.org/10.1007/s11783-011-0326-2
RESEARCH ARTICLE
Advances in the study of directed evolution for cellulases
Hailong LIN1,2, Weiguang LI1, Changhong GUO2, Sihang QU2, Nanqi REN1()
1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; 2. College of Life Science and Technology, Harbin Normal University, Harbin 150080, China
 Download: PDF(117 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

If cellulose can be effectively hydrolyzed into glucose by cellulase, the production costs of hydrogen, ethanol or other chemicals from cellulosic materials will be greatly decreased, and economically viable production of biohydrogen and bioethanol will become feasible. Cellulose is degraded into glucoses by multi-component enzyme systems. Nowadays cellulases are widely used in brewing, food, bioenergy, fodder, textiles, paper, pharmaceuticals, environmental protection and other industries. However, existing cellulases have several problems that limit their wider applications, including the low turnover number for solid cellulosic materials, and low stability in adapting to various application conditions. For example, high temperature, low pH, and so on. Application of directed evolution technology may be one of the most effective ways for improving the characteristics of cellulases. This paper presents a brief review of the cellulose hydrolysis mechanism by cellulase, advances in cellulases (endoglucanase and β-glucosidase) improvement by directed evolution for several characteristics (for instance, thermal stability, pH adaptability and enzyme activity), limitations of directed evolution for cellulases, and the outlook for directed evolution for cellulase.

Keywords biohydrogen      bioethanol      cellulase      cellulose      directed evolution     
Corresponding Author(s): REN Nanqi,Email:rnq@hit.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Hailong LIN,Weiguang LI,Changhong GUO, et al. Advances in the study of directed evolution for cellulases[J]. Front Envir Sci Eng Chin, 2011, 5(4): 519-525.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0326-2
https://academic.hep.com.cn/fese/EN/Y2011/V5/I4/519
enzymealtered propertyDNA techniquescreening/selectionexpression systemRef.
endoglucanasethermal stabilityfamily shufflingfacilitated screening-Congo red + CMC agarE. coli[15,32]
endoglucanaseactivityDNA shufflingfacilitated screening-Congo red + CMC agarE. coli (cell surface display)[16,32]
endoglucanasenonefamily shufflingfacilitated screening-Congo red + CMC agarNeurospora spheroplasts[17,32]
β-D-glucosidasecold adaptionDNA shufflingrandom screening-chromogenic substrateyeast[18,32]
β-glycosidaseactivityfamily shufflingrandom screening-chromogenic substrateE. coli[19,32]
endoglucanasealkali pHepPCRfacilitated screening-Congo red + CMC agaryeast[20,32]
β-D -glucosidasethermal stabilityepPCRrandom screening-chromogenic substrateE. coli[21,33]
β-D -glucosidaseactivityepPCRrandom screening-coupled to color reactionE. coli[22,32]
mutated β-glucosidase(glycosynthase)activityepPCRfacilitated screening-fluorogenic substrateE. coli[23,32]
endoglucanasestability, activityepPCRfacilitated screening-Congo red + CMC agarE. coli[24]
endoglucanasecold adaptationepPCRfacilitated screening-Congo red + CMC agaryeast[25]
endoglucanasecatalytic efficiency and pHepPCR and DNA shufflingfacilitated screening-Congo red + CMC agaryeast[26]
β-D-glucosidasethermal stabilityepPCR + familyshufflingrandom screening-chromogenic substrateE.coli[27,32]
endo-β-1, 4-glucanaseactivity and thermal stability and pHDNA shufflingfacilitated screening-Congo red + CMC agarE.coli[28]
endoglucanasethermal stability pHepPCR + familyshufflingfacilitated screening-Congo red + CMC agarE.coli[29]
endoglucanaseactivity, pH, stabilityepPCR + family shufflingfacilitated screening-Congo red + CMC agaryeast[30]
β-D-glucosidasethermal stabilityepPCRM9 + Cellobiose + indicator strainE.coli[33]
cellobiohydrolasethermal stabilitySCHEMAmonomera screening strategyyeast[37]
cellobiohydrolasethermal stabilitySCHEMAmonomera screening strategyyeast[38]
β-D -glucosidasecatalytic efficiencyepPCRfluorescence-activated cell sorting (FACS)E.coli[39]
Tab.1  Cellulases and relevant enzymes whose properties have been changed using directed evolution techniques
1 Hammerschlag R. Ethanol’s energy return on the investment: a survey of the literature 1990–present. Environmental Science & Technology , 2006, 40(6): 1744–1750
doi: 10.1021/es052024h
2 Lynd L R, Laser M S, Bransby D, Dale B E, Davison B, Hamilton R, Himmel M, Keller M, McMillan J D, Sheehan J, Wyman C E. How biotech can transform biofuels. Nature Biotechnology , 2008, 26(2): 169–172
doi: 10.1038/nbt0208-169
3 Alriksson B, Rose S H, van Zyl W H, Sjode A, Nilvebrant N O, Jonsson L J. Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Applied and Environmental Microbiology , 2009, 75(8): 2366–2374
doi: 10.1128/AEM.02479-08
4 Vrije T, Bakker R R, Budde M A W, Lai M H, Mars A E, Claassen P A M. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for Biofuels , 2009, 2(1): 12–26
doi: 10.1186/1754-6834-2-12
5 Dashtban M, Schraft H, Qin W S. Fungal bioconversion of lignocellulosic residues: opportunities & perspectives. International Journal of Biological Sciences , 2009, 5(6): 578–595
6 Maki M, Leung K T, Qin W S. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences , 2009, 5(5): 500–516
7 Hu L Y, Zhong W H. Advances of the research on gene cloning and functional amino-acid of cellulose. Biotechnology China , 2003, 13(2): 43–45 (in Chinese)
8 Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences , 2008, 9(9): 1621–1651
doi: 10.3390/ijms9091621
9 Lynd L R, Weimer P J, van Zyl W H, Pretorius I S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews , 2002, 66(3): 506–577
doi: 10.1128/MMBR.66.3.506-577.2002
10 Demain A L, Newcomb M, Wu J H D. Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews , 2005, 69(1): 124–154
doi: 10.1128/MMBR.69.1.124-154.2005
11 Yu X L, Wang L, Xu W M. Progress in the studies of cellulose degradation by cellulase. Journal of Ningbo University , 2007, 20(1): 78–82 (in Chinese)
12 Eijsink V G H, G?seidnes S, Borchert T V, van den Burg B. Directed evolution of enzyme stability. Biomolecular Engineering , 2005, 22(1–3): 21–30
doi: 10.1016/j.bioeng.2004.12.003
13 Hibbert E G, Dalby P A. Directed evolution strategies for improved enzymatic performance. Microbial Cell Factories , 2005, 4(1): 29–34
doi: 10.1186/1475-2859-4-29
14 Liu Y, Zhang H F, Sun Z. Advance in molecular biology and gene engineer of cellulase. Feed industry China , 2007, 28 (18): 11–14 (in Chinese)
15 Murashima K, Kosugi A, Doi R H. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Molecular Microbiology , 2002, 45(3): 617–626
doi: 10.1046/j.1365-2958.2002.03049.x
16 Kim Y S, Jung H C, Pan J G. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Applied and Environmental Microbiology , 2000, 66(2): 788–793
doi: 10.1128/AEM.66.2.788-793.2000
17 Catcheside D E A, Rasmussen J P, Yeadon P J, Bowing F J, Cambareri E B, Kato E, Gabe J, Stuart W D. Diversification of exogenous genes in vivo in Neurospora. Applied and Environmental Microbiology , 2003, 62: 544–549
18 Lebbink J H, Kaper T, Bron P, van der Oost J, de Vos W M. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry , 2000, 39(13): 3656–3665
doi: 10.1021/bi991483q
19 Kaper T, Brouns S J J, Geerling A C M, de Vos W M, van der OOST J. DNA family shuffling of hyperthermostable beta-glycosidases. Biochemical Journal , 2002, 368(2): 461–470
doi: 10.1042/BJ20020726
20 Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomolecular Engineering , 2005, 22(1–3): 89–94
doi: 10.1016/j.bioeng.2004.10.003
21 González-Blasco G, Sanz-Aparicio J, González B, Hermoso J A, Polaina J. Directed evolution of beta-glucosidase A from Paenibacillus polymyxa to thermal resistance. Journal of Biological Chemistry , 2000, 275(18): 13708–13712
doi: 10.1074/jbc.275.18.13708
22 McCarthy J K, Uzelac A, Davis D F, Eveleigh D E. Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. Journal of Biological Chemistry , 2004, 279(12): 11495–11502
doi: 10.1074/jbc.M305642200
23 Kim Y W, Lee S S, Warren R A, Withers S G. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. Journal of Biological Chemistry , 2004, 279(41): 42787–42793
doi: 10.1074/jbc.M406890200
24 Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Applied Microbiology and Biotechnology , 2009, 83(4): 649–657
doi: 10.1007/s00253-009-1901-3
25 Xiao Z Z, Wang P, Qu Y B, Gao P J, Wang T H. Cold adaptation of a mesophilic cellulase, EG III from Trichoderma reesei, by directed evolution. Science in China. Series C, Life Sciences , 2002, 45(4): 337–343
doi: 10.1360/02yc9037
26 Qin Y Q, Wei X M, Song X, Qu Y B. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. Journal of Biotechnology , 2009, 135(2): 190–195
doi: 10.1016/j.jbiotec.2008.03.016
27 Arrizubieta M J, Polaina J. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. Journal of Biological Chemistry , 2000, 275(37): 28843–28848
doi: 10.1074/jbc.M003036200
28 Lin L, Meng X, Liu P F, Hong Y Z, Wu G B, Huang X L, Li C C, Dong J L, Xiao L, Liu Z. Improved catalytic efficiency of Endo-β-1, 4-glucanase from Bacillus subtilis BME-15 by directed evolution. Applied Microbiology and Biotechnology , 2009, 82(4): 671–679
doi: 10.1007/s00253-008-1789-3
29 Heinzelman P, Komor R, Kanaan A, Romero P, Yu X L, Mohler S, Snow C, Arnold F. Efficient screening of fungal cellobiohydrolase classIenzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Engineering, Design & Selection , 2010, 23(11): 871–880
doi: 10.1093/protein/gzq063
30 Heinzelman P, Snow C D, Smith M A, Yu X L, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold F H. SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. Journal of Biological Chemistry , 2009, 284(39): 26229–26233
doi: 10.1074/jbc.C109.034058
31 Zhang X Y. Studies on the directed evolution and thermostability of β-glucanase. Dissertation for Doctoral Degree . Hangzhou: Zhejiang University, 2006, 64–94 (in Chinese)
32 Qin Y Q. Protein engineering and expression of the endoglucanase II from Trichoderma reesei. Dissertation for Doctoral Degree . Jinan: Shandong University, 2008: 71–101 (in Chinese)
33 Hardiman E, Gibbs M, Reeves R, Bergquist P. Directed evolution of a thermophilic β-glucosidase for cellulosic bioethanol production. Applied Biochemistry Biotechnology , 2010 161(1–8):301–312
34 Zhao L G, Meng P, Li L J, Yu S Y. Detection and identification of β-glucosidase with esculin as substrste. Food and Fermentation Industries , 2008, 34(12): 163–166 (in Chinese)
35 Liu W, Hong J, Bevan D R, Zhang Y H P. Fast identification of thermostable beta-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnology and Bioengineering , 2009, 103(6): 1087–1094
doi: 10.1002/bit.22340
36 Dashtban M, Maki M, Leung K T, Mao C Q, Qin W S. Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 2010, 30 (4): 302–309
37 Sen S, Dasu D V, Mandal B. Developments in directed evolution for improving enzyme functions. Applied Biochemistry and Biotechnology , 2007, 143(3): 212–223
doi: 10.1007/s12010-007-8003-4
38 Percivalzhang Y, Himmel M, Mielenz J. Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances , 2006, 24(5): 452–481
doi: 10.1016/j.biotechadv.2006.03.003
39 Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y. Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II and III, expressed inEscherichia coli. Applied Microbiology and Biotechnology , 2008, 81(4): 681–689
doi: 10.1007/s00253-008-1667-z
[1] Haifa RAJHI,Daniel PUYOL,Mirna C. MARTÍNEZ,Emiliano E. DÍAZ,José L. SANZ. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems[J]. Front. Environ. Sci. Eng., 2016, 10(3): 513-521.
[2] Ruiqiang LIU,Rattan LAL. Effects of molecular weight and concentration of carboxymethyl cellulose on morphology of hydroxyapatite nanoparticles as prepared with one-step wet chemical method[J]. Front. Environ. Sci. Eng., 2015, 9(5): 804-812.
[3] Guochen ZHENG, Jianzheng LI, Feng ZHAO, Liguo ZHANG, Li WEI, Qiaoying BAN, Yongsheng ZHAO. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge[J]. Front Envir Sci Eng, 2012, 6(1): 125-130.
[4] Guanghong ZHENG, Zhuhui KANG, Yifan QIAN, Lei WANG, . Enhanced biohydrogen generation from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobacter sphaeroides AR-3[J]. Front.Environ.Sci.Eng., 2009, 3(4): 387-392.
[5] Bo WANG, Wei WAN, Jianlong WANG, . Effects of nitrate concentration on biological hydrogen production by mixed cultures[J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed