Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (1) : 107-116    https://doi.org/10.1007/s11783-011-0327-1
RESEARCH ARTICLE
Toxic effects of enrofloxacin on Scenedesmus obliquus
Hongwei QIN, Liufang CHEN, Nan LU, Yahui ZHAO, Xing YUAN()
School of Urban and Environmental Science, Northeast Normal University, Changchun 130024, China
 Download: PDF(221 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this article, the toxic effects of Enrofloxacin (ENFX) on Scenedesmus obliquus were studied, through investigating the growth, photosynthetic pigments, and protein contents. The possible toxic mechanisms of ENFX were analyzed by determining the superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, proline content, and superoxide anion (O2-) generation rate. Results showed that the growth of algae was inhibited by ENFX and the 50% effective concentration (EC50) values for 24, 48, 72, and 96 h of ENFX were 88.39, 63.86, 45.10, and 59.16 mg·L-1, respectively. After treated with ENFX for 96 h, the contents of photosynthetic pigments decreased with the increase of ENFX concentration, the content of soluble protein and the activity of SOD increased and then decreased, and the generation rate of superoxide anion (O2-) increased continually. The contents of MDA and proline changed little in lower ENFX concentration groups, but increased rapidly when treated with higher concentration groups. These results suggested that ENFX affected the growth of S. obliquus, and the main toxicity mechanism was that algal cells generated the reactive oxygen species under ENFX stress, and then the reactive oxygen species (ROS) induced the oxidation damages of biologic macromolecules and changed the biomembrane permeability further.

Keywords enrofloxacin      Scenedesmus obliquus      toxic effects     
Corresponding Author(s): YUAN Xing,Email:yuanx@nenu.edu.cn   
Issue Date: 01 February 2012
 Cite this article:   
Hongwei QIN,Liufang CHEN,Nan LU, et al. Toxic effects of enrofloxacin on Scenedesmus obliquus[J]. Front Envir Sci Eng, 2012, 6(1): 107-116.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0327-1
https://academic.hep.com.cn/fese/EN/Y2012/V6/I1/107
Fig.1  Relationship between cell density of and optical density
Fig.2  Growth curve of in different concentrations of ENFX
culture time/hregression equation a)EC50/(mg·L-1)R95% confidence interval
24Y = 38.49X - 124.9088.390.91353.29-146.61
48Y = 37.21X - 104.6663.860.96448.19-84.61
72Y = 38.89X - 97.9345.100.99640.20-50.60
96Y = 35.40X - 94.4359.160.99653.58-65.31
Tab.1  Acute toxicity of ENFX to
compoundalgal speciesEC50/(mg·L-1)references
ciprofloxacinMicrocystis aeruginosa0.005[23]
Selenastrum capricornutum2.97
Chlorella vulgarrs20.61[24]
flumequinMicrocystis aeruginosa0.159[23]
Selenastrum capricornutum5
Rhodomonas salina18
oxolinic acidMicrocystis aeruginosa0.18
Selenastrum capricornutum16
Rhodomonas salina10
sarafloxacinMicrocystis aeruginosa0.015OMR
Selenastrum capricornutum16
Rhodomonas salina24
norfloxacinChlorella pyrenoidosa30.78[25]
Scenedesmus obliquus50.18[26]
Tab.2  Overview of the toxicity data of quinolone antibiotics to algae
Fig.3  Effects of different concentrations of ENFX on photosynthetic pigments contents of (96 h exposure)
Fig.4  Effects of different concentrations of ENFX on soluble protein of (96 h exposure). *, **: compared with the control group, <0.05, <0.01; FW: fresh weight
Fig.5  Effects of ENFX on SOD activity and generation rate of (96 h exposure). FW: fresh weight
Fig.6  Effects of different concentrations of ENFX on MDA contents of (96 h exposure). *, **: compared with the control group, <0.05, <0.01; FW: fresh weight
Fig.7  Effects of different concentrations of ENFX on proline contents of (96 h exposure). *, **: compared with the control group, <0.05, <0.01; FW: fresh weight
C-aC-bC-kproteinSODMDAO2-proline
C-a10.9420.9970.106-0.260-0.867-0.913-0.757
C-b10.9310.053-0.255-0.756-0.921-0.686
C-k10.171-0.225-0.898-0.932-0.803
protein10.729-0.594-0.373-0.679
SOD1-0.1460.091-0.189
MDA10.9070.959
O2-10.908
proline1
Tab.3  Correlations of the physiologic biochemical indexes
1 Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle change?. Environmental Health Perspectives , 1999, 107(Suppl 6): 907–938
doi: 10.2307/3434573
2 Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R. Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environmental Science &amp; Technology , 2003, 37(7): 1241–1248
doi: 10.1021/es020158e
3 Wiegel S, Aulinger A, Brockmeyer R, Harms H, Loffler J, Reincke H, Schmidt R, Stachel B, Von Tumpling W, Wanke A. Pharmaceuticals in the river Elbe and its tributaries. Chemosphere , 2004, 57(2): 107–126
doi: 10.1016/j.chemosphere.2004.05.017
4 Williams R T. Human Pharmaceuticals: Assessing the Impacts on Aquatic Ecosystems. Pensacola , FL: Society of Environmental Toxicology and Chemistry (SETAC) Press, 2005
5 Fent K, Weston A A, Caminada D. Ecotoxicology of human pharmaceuticals. Aquatic Toxicology (Amsterdam, Netherlands) , 2006, 76(2): 122–159
doi: 10.1016/j.aquatox.2005.09.009
6 Daughton C G, Jones-Lepp T L. Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. American Chemical Society: Washington, DC , 2001, 2–38
7 Halling-S?rensen B, Nors-Nielsen S, Lanzky P F, Ingerslev F, Holten-Lützhoft H C, J?rgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere , 1998, 36(2): 357–393
doi: 10.1016/S0045-6535(97)00354-8
8 Jones O A H, Voulvoulis N, Lester J N. Human pharmaceuticals in the aquatic environment a review. Environmental Technology , 2001, 22(12): 1383–1394
doi: 10.1080/09593332208618186
9 Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicology Letters , 2002, 131(1-2): 5–17
doi: 10.1016/S0378-4274(02)00041-3
10 Kolpin D K, Furlong E T, Meyer M T, Thurman M E, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environmental Science &amp; Technology , 2002, 36(6): 1202–1211
doi: 10.1021/es011055j
11 Halling-S?rensen B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology , 2001, 40(4): 451–460
doi: 10.1007/s002440010197
12 Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators , 2008, 8(1): 1–13
doi: 10.1016/j.ecolind.2007.06.002
13 Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment. Marine Pollution Bulletin , 2005, 51(1-4): 218–223
doi: 10.1016/j.marpolbul.2004.10.038
14 Xiong L, Xie P, Sheng X M, Wu Z B, Xie L Q. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicology and Environmental Safety , 2005, 60(2): 188–192
doi: 10.1016/j.ecoenv.2004.01.012
15 Chen J M, Ma J Y, Cao W, Wang P W, Tong S M, Sun Y Z. Sensitivity of green and blue-green algae to methyl tert-butyl ether. Journal of Environmental Sciences (China) , 2009, 21(4): 514–519
doi: 10.1016/S1001-0742(08)62301-3
16 US Environmental Protection Agency. Algae Assay Procedure Bottle Test, National Eutrophication Research Program. Corvallis , Oregon: US EPA. National Environmental Research Center, 1971, 1–82
17 Ministry of Agriculture of China. Determination of enrofloxacin and ciprofloxacin residues in animal food by high performance liquid chromatography. Chinese Journal of Veterinary Drug , 2003, 37(8): 11–13 (in Chinese)
18 Organization for Economic Cooperation and Development. OECD Guidelines for Testing of Chemicals: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Paris: OECD, 2006, 7–9
19 Li H S. Principle and Technology of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2003, 134–137 (in Chinese)
20 Hao Z B, Cang J, Xu C. Experiment of Plant Physiology. Harbin: Harbin Institute of Technology Press, 2004, 67–113 (in Chinese)
21 Zhang Z A, Chen Z Y. Experiment Technology of Plant Physiology. Changchun: Jilin University Press, 2008, 190–191 (in Chinese)
22 Wu Y B, Liao X D, Wang Z S, Chen Z L, Wang Y M. The growth inhibition toxicity of enrofloxacin to Haemafococcus pluvialis. Journal of South China Agricultural University , 2005, 26(4): 99–101 (in Chinese)
23 Halling-S?rensen B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere , 2000, 40(7): 731–739
doi: 10.1016/S0045-6535(99)00445-2
24 Wang X, Nie X P, Li K B. Acute toxicity of CPFX and TCCA to aquatic organisms. Ecologic Science , 2006, 25(2): 155–157 (in Chinese)
25 Nie X P, Lu J Y, Li X, Yang Y F. Toxic effects of norfloxacin on the growth and the activity of antioxidase of chlorella pyrenoidosa. Asian Journal of Ecotoxicology , 2007, 2(3): 327–332 (in Chinese)
26 Lu J Y, Li X, Yang Y T, Nie X P. Toxic effects of nutylated hydroxyanisole and norfloxacin on aquatic organisms. Ecologic Science , 2007, 26(1): 55–58 (in Chinese)
27 Wei C X, Zhang Y B, Guo J, Han B, Yang X, Yuan J L. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. Journal of Environmental Sciences (China) , 2010, 22(1): 155–160
doi: 10.1016/S1001-0742(09)60087-5
28 Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F. Antioxidant defense system, pigment composition and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology , 1999, 119(3): 1091–1100
doi: 10.1104/pp.119.3.1091
29 Gao J, Sun M Z, Wang Q Y. Effects of copper ion on the growth of Isochrysis zhanjiangensis. Marine Fisheries Research , 2007, 28(4): 54–58 (in Chinese)
30 Geoffroy L, Dewez D, Vernet G, Popovic R. Different physiological parameters used in evaluation of oxyfluorfen effect on S.obliquus: validity of parameters as biomarkers. Archives of Environmental Contamination and Toxicology , 2003, 45(4): 439–454
31 Gurbuz F, Ciftci H, Akcil A. Biodegradation of cyanide containing effluents by Scenedesmus obliquus. Journal of Hazardous Materials , 2009, 162(1): 74–79
doi: 10.1016/j.jhazmat.2008.05.008
32 Alberte R S, Friedman A L, Gustafson D L, Rudnick M S, Lyman H. Light-harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment-protein complexes. Biochimica et Biophysica Acta , 1981, 635(2): 304–316
doi: 10.1016/0005-2728(81)90029-3
33 Singh P K, Tewari R K. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology , 2003, 24(1): 107–112
34 Reinheckel T, Noack H, Lorenz S, Wiswedel I, Augustin W. Comparison of protein oxidation and aldehyde formation during oxidative stress in isolated mitochondria. Free Radical Research , 1998, 29(4): 297–305
doi: 10.1080/10715769800300331
35 Li N Y, Gao J F, Wang P H. The characteristics of induced protein in shoots of wheat seedlings under water stress. Acta Phytophysiologica Sinica , 1988, 24(1): 65–71 (in Chinese)
36 Ma J M, Li J, Zhang G N, Yang K J, Wang L, Wu Z B. Effects of POD and Hg2+ on seed germination and seedling growth of wheat. Chinese Bulletin of Botany , 2004, 21(5): 531–538 (in Chinese)
37 Dixit V, Pandey V, Shyam R. Chromium ions inactivate electrontransport and enhance superoxide generation in vivo in pea (Pisum sativum L.cv. Azad) root mitochondria. Plant, Cell &amp; Environment , 2002, 25(5): 687–693
doi: 10.1046/j.1365-3040.2002.00843.x
38 Lurie S, Ronen R, Lipsker Z, Aloni B. Effects of paclobutrazol and chilling temperatures on lipids, antioxidants and ATPase activity of plasma membrane isolated from green bell pepper fruits. Physiologia Plantarum , 1994, 91(4): 593–598
doi: 10.1111/j.1399-3054.1994.tb02993.x
39 Kishorekumar A, Jaleel C A, Manivannan P, Sankar B, Sridharan R, Murali P V, Panneerselvam R. Comparative effects of different triazole compounds on antioxidant metabolism of Solenostemon rotundifolius. Colloids and Surfaces. B, Biointerfaces , 2008, 62(2): 307–311
doi: 10.1016/j.colsurfb.2007.10.014
40 Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends in Plant Science , 2004, 9(10): 490–498
doi: 10.1016/j.tplants.2004.08.009
41 Aibibu N, Liu Y G, Zeng G M, Wang X, Chen B B, Song H X, Xu L. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technology , 2010, 101(16): 6297–6303
doi: 10.1016/j.biortech.2010.03.028
42 Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzymes efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science , 2001, 161(3): 613–619
doi: 10.1016/S0168-9452(01)00450-2
43 Khatun S, Ali M B, Hahn E J, Paek K Y. Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany , 2008, 64(3): 279–285
doi: 10.1016/j.envexpbot.2008.02.004
44 Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. 3rd ed. New York: Oxford University Press Inc., 1999, 936
45 Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondaldehyde and related aldehydes. Free Radical Biology &amp; Medicine , 1991, 11(1): 81–128
doi: 10.1016/0891-5849(91)90192-6
46 Seljeskog E, Hervig T, Mansoor M A. A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit. Clinical Biochemistry , 2006, 39(9): 947–954
doi: 10.1016/j.clinbiochem.2006.03.012
47 Altinordulu S, Eraslan G. Effects of some quinolone antibiotics on malondialdehyde levels and catalase activity in chicks. Food and Chemical Toxicology , 2009, 47(11): 2821–2823
doi: 10.1016/j.fct.2009.08.018
48 Wu Z T, Hou W R. Study on the relation between the influences of KT and ABA and MDA on SOD activity and SOD comformation and hydrophobicity changes. Chinese Biochemical Journal , 1997, 13(6): 716–718 (in Chinese)
49 Alia, Pardha Saradhi P. Proline accumulation under heavy metal stress. Journal of Plant Physiology , 1991, 138(5): 554–558
50 Alia, Pardha Saradhi P. Suppression in mitochondrial electron transport is the prime cause behind stress induced proline accumulation. Biochemical and Biophysical Research Communications , 1993, 193(1): 54–58
doi: 10.1006/bbrc.1993.1589
51 Alia, Pardha Saradhi P, Mohanty P. Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant and Soil , 1993, 155-156(1): 497–500
52 Dhir B, Sharmila P, Saradhi P P. Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquatic Toxicology (Amsterdam, Netherlands) , 2004, 66(2): 141–147
doi: 10.1016/j.aquatox.2003.08.005
53 Lin C C, Kao C H. Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Science , 1996, 114(2): 121–128
doi: 10.1016/0168-9452(96)04323-3
54 Buetler T M, Cottet-Maire F, Krauskopf A, Ruegg U T. Does cyclosporin A generate free radicals? Trends in Pharmacological Sciences , 2000, 21(8): 288–290
doi: 10.1016/S0165-6147(00)01508-X
55 Hu Q Q, Xiong L, Tianpei X Z, Li W Y. Toxic effects of dibutyl phthalate (DBP) on Scenedesmus obliquus. Asian Journal of Ecotoxicology , 2008, 3(1): 87–92 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed