Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (2) : 271-279    https://doi.org/10.1007/s11783-011-0328-0
REVIEW ARTICLE
Systematical strategies for wastewater treatment and the generated wastes and greenhouse gases in China
Jingbo GUO1,2, Fang MA2(), Yuanyuan QU3, Ang LI2, Liang WANG4
1. School of Civil Engineering, Northeast Dianli University, Jilin 132012, China; 2. State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; 3. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; 4. Vanillin Factory, Jilin Petrochemical Company, China National Petroleum Corporation, Jilin 132021, China
 Download: PDF(267 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

China now faces double challenges of water resources shortage and severe water pollution. To resolve Chinese water pollution problems and reduce its impacts on human health, economic growth and social development, the situation of wastewater treatment was investigated. Excess sludge and greenhouse gases (GHGs) emitted during wastewater treatment were also surveyed. It is concluded that Chinese water pollution problems should be systematically resolved with inclusion of wastewater and the solid waste and GHGs generated during wastewater treatment. Strategies proposed for the wastewater treatment in China herein were also adequate for other countries, especially for the developing countries with similar economic conditions to China.

Keywords wastewater treatment      solid waste      greenhouse gases      systematical strategies     
Corresponding Author(s): MA Fang,Email:mafang@hit.edu.cn   
Issue Date: 01 April 2012
 Cite this article:   
Jingbo GUO,Fang MA,Yuanyuan QU, et al. Systematical strategies for wastewater treatment and the generated wastes and greenhouse gases in China[J]. Front Envir Sci Eng, 2012, 6(2): 271-279.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0328-0
https://academic.hep.com.cn/fese/EN/Y2012/V6/I2/271
Fig.1  Wastewater discharge and GDP of China in the past decade
wastewater treatment processprocess proportion/%wastewater treatment capability proportion/%
activated sludge processes
CASPa)16.327.6
innovative processes based on CASP
oxidation ditch39.733.1
SBRb)10.36.1
A/Oc)7.813.3
A2/Od)15.117.6
others0.90.4
biofilm processes3.00.4
membrane bioreactors0.51.2
natural biologic treatment systems3.70.25
anaerobic biologic treatment systems2.60.05
Tab.1  Sampling survey on the types of wastewater treatment process (2008)
Fig.2  Excess sludge treatment processes of wastewater treatment plants
Fig.3  Ultimate excess sludge disposal of wastewater treatment plants
treatment methodsemission factor/(tons CO2-eqa) /tons of MSW)
landfill1.97
incineration1.67
sorting+ composting+ landfill1.61
sorting+ composting+ incineration1.41
sorting+ dry biomethanization+ landfill1.42
sorting+ wet biomethanization+ incineration+ landfill1.19
Tab.2  Emission factors for different municipal solid waste (MSW) management systems
1 Liu J G, Diamond J.China’s environment in a globalizing world. Nature, 2005, 435(7046): 1179–1186
2 Ma F, Guo J B, Zhao L J, Chang C C, Cui D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresource Technology , 2009, 100(2): 597–602
doi: 10.1016/j.biortech.2008.06.066
3 Jiang H L, Maszenan A M, Tay J H. Bioaugmentation and coexistence of two functionally similar bacterial strains in aerobic granules. Applied Microbiology and Biotechnology , 2007, 75(5): 1191–1200
doi: 10.1007/s00253-007-0917-9
4 Park D, Lee D S, Kim Y M, Park J M. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresource Technology , 2008, 99(6): 2092–2096
doi: 10.1016/j.biortech.2007.03.027
5 Guo J B, Ma F, Chang C C, Cui D, Wang L, Yang J X, Wang L. Start-up of a two-stage bioaugmented anoxic-oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations. Bioresource Technology , 2009, 100(14): 3483–3488
doi: 10.1016/j.biortech.2009.02.059
6 Peng Y, Hou H, Wang S, Cui Y, Zhiguo Y. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system. Journal of Environmental Sciences (China) , 2008, 20(4): 398–403
doi: 10.1016/S1001-0742(08)62070-7
7 Hashimoto T, Onda K, Nakamura Y, Tada K, Miya A, Murakami T. Comparison of natural estrogen removal efficiency in the conventional activated sludge process and the oxidation ditch process. Water Research , 2007, 41(10): 2117–2126
8 Khehra M S, Saini H S, Sharma D K, Chadha B S, Chimni S S. Biodegradation of azo dye C.I. Acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes and Pigments, 2006, 70(1): 1–7
9 Zhao W T, Huang X, Lee D J. Enhanced treatment of coke plant wastewater using an anaerobic-anoxic-oxic membrane bioreactor system. Separation and Purification Technology , 2009, 66(2): 279–286
doi: 10.1016/j.seppur.2008.12.028
10 Henze M, van Loosdrecht M, Ekama G, Brdjanovic D. Biological Wastewater Treatment: Principles, Modelling and Design. London: IWA Publishing, 2008
11 Wilderer P A, Irvine R L, Goronsky M C. Sequencing Batch Reactor Technology. London: IWA Publishing, 2001
12 He S B, Xue G, Kong H N, Li X. Improving the performance of sequencing batch reactor (SBR) by the addition of zeolite powder. Journal of Hazardous Materials , 2007, 142(1-2): 493–499
doi: 10.1016/j.jhazmat.2006.08.053
13 Foresti E, Zaiat M, Vallero M. Anaerobic processes as the core technology for sustainable domestic wastewater treatment: consolidated applications, new trends, perspectives, and challenges. Reviews in Environmental Science and Biotechnology , 2006, 5(1): 3–19
doi: 10.1007/s11157-005-4630-9
14 Lew B, Tarre S, Beliavski M, Dosoretz C, Green M. Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination , 2009, 243(1-3): 251–257
doi: 10.1016/j.desal.2008.04.027
15 A?lvarez J A, Armstrong E,Go?mez M, Soto M. Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresource Technology , 2008, 99(15): 7051–7062
doi: 10.1016/j.biortech.2008.01.013
16 Chu L B, Yang F L, Zhang X W. Anaerobic treatment of domestic wastewater in a membrane-coupled expended granular sludge bed (EGSB) reactor under moderate to low temperature. Process Biochemistry , 2005, 40(3-4): 1063–1070
doi: 10.1016/j.procbio.2004.03.010
17 Wen C, Huang X, Qian Y. Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration. Process Biochemistry , 2009, 35(3-4): 335–340
18 Bramwell S A, Prasad P V D. Performance of a small aquatic plant wastewater treatment system under Caribbean conditions. Journal of Environmental Management , 1995, 44(3): 213–220
doi: 10.1006/jema.1995.0041
19 Ong S A, Uchiyama K, Inadama D, Yamagiwa K. Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using up-flow constructed wetland. Journal of Hazardous Materials , 2009, 165(1-3): 696–703
doi: 10.1016/j.jhazmat.2008.10.071
20 Ye F X, Li Y. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecological Engineering , 2009, 35(7): 1043–1050
doi: 10.1016/j.ecoleng.2009.03.009
21 Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi. Biochemical Engineering Journal , 2006, 28(2): 117–122
doi: 10.1016/j.bej.2005.09.008
22 Griffith J W, Raymond D H. The first commercial supercritical water oxidation sludge processing plant. Waste Management , 2002, 22(4): 453–459
doi: 10.1016/S0956-053X(02)00029-6
23 Mahmood T, Elliott A. A review of secondary sludge reduction technologies for the pulp and paper industry. Water Research , 2006, 40(11): 2093–2112
doi: 10.1016/j.watres.2006.04.001
24 Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes: an overview of research achievements and perspectives. Bioresource Technology , 2000, 74(1): 3–16
doi: 10.1016/S0960-8524(00)00023-7
25 Datta T, Liu Y J, Goel R. Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors. Chemosphere , 2009, 76(5): 697–705
doi: 10.1016/j.chemosphere.2009.02.040
26 Wang W H, Jung Y J, Kiso Y, Yamada T, Min K S. Excess sludge reduction performance of an aerobic SBR process equipped with a submerged mesh filter unit. Process Biochemistry , 2006, 41(4): 745–751
doi: 10.1016/j.procbio.2005.09.016
27 Paul E, Camacho P, Sperandio M, Ginestet P. Technical and economical evaluation of a thermal, and two oxidative techniques for the reduction of excess sludge production. Process Safety and Environmental Protection , 2006, 84(4): 247–252
doi: 10.1205/psep.05207
28 Zhang G M, Zhang P Y, Yang J M, Chen Y M. Ultrasonic reduction of excess sludge from the activated sludge system. Journal of Hazardous Materials , 2007, 145(3): 515–519
doi: 10.1016/j.jhazmat.2007.01.133
29 Kampas P, Parsons S A, Pearce P, Ledoux S, Vale P, Churchley J, Cartmell E. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal. Water Research , 2007, 41(8): 1734–1742
doi: 10.1016/j.watres.2006.12.044
30 Kim T H, Lee S R, Nam Y K, Yang J, Park C, Lee M. Disintegration of excess activated sludge by hydrogen peroxide oxidation. Desalination , 2009, 246(1-3): 275–284
doi: 10.1016/j.desal.2008.06.023
31 Lin J G, Ma Y S, Huang C C. Alkaline hydrolysis of the sludge generated from a high-strength, nitrogenous-wastewater biological-treatment process. Bioresource Technology , 1998, 65(1-2): 35–42
doi: 10.1016/S0960-8524(98)00028-5
32 Guellil A, Boualam M, Quiquampoix H, Ginester P, Audic P, Block J C. Hydrolysis of wastewater colloidal organic matter by extracellular enzymes extracted from activated sludge flocs. Water Science and Technology , 2001, 43(6): 33–40
33 Suresh Kumar M, Mudliar S N, Reddy K M K, Chakrabarti T. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant. Bioresource Technology , 2004, 95(3): 327–330
doi: 10.1016/j.biortech.2004.02.019
34 Arakane M, Imai T, Murakami S, Takeuchi M, Ukita M, Sekine M, Higuchi T. Resource recovery from excess sludge by subritical water combined with magnesium ammonium phosphate process. Water Science and Technology , 2006, 54(9): 81–86
doi: 10.2166/wst.2006.756
35 Saktaywin W, Tsuno H, Nagare H, Soyama T. Operation of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. Water Science and Technology , 2006, 53(12): 217–227
doi: 10.2166/wst.2006.424
36 Saktaywin W, Tsuno H, Nagare H, Soyama T, Weerapakkaroon J. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Research , 2005, 39(5): 902–910
doi: 10.1016/j.watres.2004.11.035
37 El-Fadel M, Massoud M. Methane emissions from wastewater management. Environmental Pollution , 2001, 114(2): 177–185
doi: 10.1016/S0269-7491(00)00222-0
38 Metz B, Davidson O R, Bosch P R, Dave R, Meyer L A. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. London: Cambridge University Press, 2008
39 Bani Shahabadi M, Yerushalmi L, Haghighat F. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Research , 2009, 43(10): 2679–2687
doi: 10.1016/j.watres.2009.02.040
40 Cakir F Y, Stenstrom M K. Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. Water Research , 2005, 39(17): 4197–4203
doi: 10.1016/j.watres.2005.07.042
41 Monteith H D, Sahely H R, MacLean H L, Bagley D M. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants. Water Environment Research , 2005, 77(4): 390–403
doi: 10.2175/106143005X51978
42 Préndez M, Lara-González S. Application of strategies for sanitation management in wastewater treatment plants in order to control/reduce greenhouse gas emission. Journal of Environmental Management , 2008, 88(4): 658–664
doi: 10.1016/j.jenvman.2007.03.041
43 Rosso D, Stenstrom M K. The carbon-sequestration potential of municipal wastewater treatment. Chemosphere , 2008, 70(8): 1468–1475
doi: 10.1016/j.chemosphere.2007.08.057
44 Kong H N, Kimochi Y, Mizuochi M, Inamori R, Inamori Y. Study of the characteristics of CH4 and N2O emission and methods of controlling their emission in the soil-trench wastewater treatment process. Science of the Total Environment , 2002, 290(1-3): 59–67
doi: 10.1016/S0048-9697(01)01058-0
45 Kimochi Y, Inamori Y, Mizuochi M, Xu K Q, Matsumura M. Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration. Journal of Fermentation and Bioengineering , 1998, 86(2): 202–206
doi: 10.1016/S0922-338X(98)80114-1
46 Kampschreur M J, Temmink H, Kleerebezem R, Jetten M S M, Van Loosdrecht M C M. Nitrous oxide emission during wastewater treatment. Water Research , 2009, 43(17): 4093–4103
doi: 10.1016/j.watres.2009.03.001
47 Wong B T, Show K Y, Lee D J, Lai J Y. Carbon balance of anaerobic granulation process: carbon credit. Bioresource Technology , 2009, 100(5): 1734–1739
doi: 10.1016/j.biortech.2008.09.045
48 Inamori R, Gui P, Dass P, Matsumura M, Xu K Q, Kondo T, Ebie Y, Inamori Y. Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Process Biochemistry , 2007, 42(3): 363–373
doi: 10.1016/j.procbio.2006.09.007
49 Yacob S, Hassan M A, Shirai Y, Wakisaka M, Subash S. Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment. Chemosphere , 2005, 59(11): 1575–1581
doi: 10.1016/j.chemosphere.2004.11.040
50 Vanotti M B, Szogi A A, Vives C A. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms. Waste Management (New York) , 2008, 28(4): 759–766
doi: 10.1016/j.wasman.2007.09.034
51 Zhang Q H, Wang X C, Xiong J Q, Chen R, Cao B. Application of life cycle assessment for an evaluation of wastewater treatment and reuse project–Case study of Xi’an, China. Bioresource Technology , 2010, 101(5): 1421–1425
doi: 10.1016/j.biortech.2009.05.071
52 Pera-Titus M, García-Molina V, Ba?os M A, Giménez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental , 2004, 47(4): 219–256
doi: 10.1016/j.apcatb.2003.09.010
53 Mohapatra D P, Brar S K, Tyagi R D, Surampalli R Y. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater Sludge-Fate of bisphenol A. Chemosphere , 2010, 78(8): 923–941
doi: 10.1016/j.chemosphere.2009.12.053
[1] Yangyang Liang, Qingbin Song, Naiqi Wu, Jinhui Li, Yuan Zhong, Wenlei Zeng. Repercussions of COVID-19 pandemic on solid waste generation and management strategies[J]. Front. Environ. Sci. Eng., 2021, 15(6): 115-.
[2] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[3] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[4] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[5] Jianguo Liu, Shuyao Yu, Yixuan Shang. Toward separation at source: Evolution of Municipal Solid Waste management in China[J]. Front. Environ. Sci. Eng., 2020, 14(2): 36-.
[6] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[7] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[8] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[9] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[10] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[11] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[12] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[13] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[14] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[15] Panagiotis G. Kougias, Irini Angelidaki. Biogas and its opportunities—A review[J]. Front. Environ. Sci. Eng., 2018, 12(3): 14-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed