Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 569-574    https://doi.org/10.1007/s11783-011-0335-1
RESEARCH ARTICLE
Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery
Aijie WANG1(), Haoyi CHENG1, Nanqi REN1, Dan CUI1, Na LIN1, Weimin WU1,2
1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; 2. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA
 Download: PDF(212 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A sediment microbial fuel cell (SMFC) with three dimensional floating biocathode (FBC) was developed for the electricity generation and biodegradation of sediment organic matter in order to avoid negative effect of dissolved oxygen (DO) depletion in aqueous environments on cathode performance and search cost-effective cathode materials. The biocathode was made from graphite granules with microbial attachment to replace platinum (Pt)-coated carbon paper cathode in a laboratory-scale SMFC (3 L in volume) filled with river sediment (organic content 49±4 g·kg-1 dry weight). After start-up of 10 days, the maximum power density of 1.00W·m-3 (based on anode volume) was achieved. The biocathode was better than carbon paper cathode catalyzed by Pt. The attached biofilm on cathode enhanced power generation significantly. The FBC enhanced SMFC performance further in the presence aeration. The SMFC was continuously operated for an over 120-day period. Power generation peaked within 24 days, declined gradually and stabilized at a level of 1/6 peak power output. At the end, the sediment organic matter content near the anode was removed by 29% and the total electricity generated was equal to 0.251 g of chemical oxygen demand (COD) removed.

Keywords microbial fuel cell (MFC)      sediment      biocathode      electricity generation      organic removal     
Corresponding Author(s): WANG Aijie,Email:waj0578@hit.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Aijie WANG,Haoyi CHENG,Nanqi REN, et al. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J]. Front Envir Sci Eng, 2012, 6(4): 569-574.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0335-1
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/569
Fig.1  Schematic diagram of the laboratory-scale sediment MFC with FBC
Fig.2  Current and electrode potential in SMFCs with FBC and CP-Pt
Fig.3  Scanning electron micrograph of biofilm on the surface of graphite granules taken from FBC 8 days after the circuit closed
Fig.4  Performance of SMFC with different cathodes and different conditions: (a) power density curve; (b) polarization curve of cathode. FBC-A: FBC with surface aeration; FBC-NA: FBC without surface aeration; FBC-B: FBC treated with bactericide; FC-NM: FC without attached biofilm; Pt-A: Pt-cathode with surface aeration
closed circuitopen circuit
dayvicinity of anode3 cm away from anodesediment surfacevicinity of anode
day 047.1±3.346.8±3.246.5±2.547.2±1.7
day 3041.9±2.344.6±4.442.6±1.745.8±2.7
day 12033.5±2.442.8±4.339.8±1.543.3±2.8
Tab.1  Sediment organic matter content (g·kg) in the SMFC with closed circuit and open circuit (control)
Fig.5  (a) Current generation with time in SMFC with FBC over 134 day period; (b) accumulated chemical oxygen demand (COD) removal based on the calculation from output current, assuming the columbic efficiency of 100%, during the operation
1 Aelterman P, Rabaey K, Clauwaert P, Verstraete W. Microbial fuel cells for wastewater treatment. Water Science and Technology , 2006, 54(8): 9–15
doi: 10.2166/wst.2006.702 pmid:17163008
2 You S J, Wang J Y, Ren N Q, Wang X H, Zhang J N. Sustainable conversion of glucose into hydrogen peroxide in a solid polymer electrolyte microbial fuel cell. Chemistry and Sustainability. Energy & Materials , 2010, 33(3): 334–338
3 Moon H, Chang I S, Kim B H. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology , 2006, 97(4): 621–627
doi: 10.1016/j.biortech.2005.03.027 pmid:15939588
4 Katuri K P, Scott K. Electricity generation from the treatment of wastewater with a hybrid up-flow microbial fuel cell. Biotechnology and Bioengineering , 2010, 107(1): 52–58
doi: 10.1002/bit.22778 pmid:20506286
5 Bond D R, Holmes D E, Tender L M, Lovley D R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science , 2002, 295(5554): 483–485
doi: 10.1126/science.1066771 pmid:11799240
6 Reimers C E, Tender L M, Fertig S, Wang W. Harvesting energy from the marine sediment—water interface. Environmental Science & Technology , 2001, 35(1): 192–195
doi: 10.1021/es001223s pmid:11352010
7 Song T S, Yan Z S, Zhao Z W, Jiang H L. Removal of organic matter in fresh water sediment by microbial fuel cells at various external resistances. Journal of Chemical Technology and Biotechnology , 2010, 85(11): 1489–1493
8 Hong S W, Chang I S, Choi Y S, Kim B H, Chung T H. Responses from freshwater sediment during electricity generation using microbial fuel cells. Bioprocess and Biosystems Engineering , 2009, 32(3): 389–395
doi: 10.1007/s00449-008-0258-9 pmid:18751733
9 de Schamphelaire L, Van den Bossche L, Dang H S, H?fte M, Boon N, Rabaey K, Verstraete W. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science & Technology , 2008, 42(8): 3053–3058
doi: 10.1021/es071938w pmid:18497165
10 Kaku N, Yonezawa N, Kodama Y, Watanabe K. Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology , 2008, 79(1): 43–49
doi: 10.1007/s00253-008-1410-9 pmid:18320186
11 Nielsen M E, Reimers C E, Stecher H A III. Enhanced power from chambered benthic microbial fuel cells. Environmental Science & Technology , 2007, 41(22): 7895–7900
doi: 10.1021/es071740b pmid:18075105
12 He Z, Shao H, Angenent L T. Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosensors & Bioelectronics , 2007, 22(12): 3252–3255
doi: 10.1016/j.bios.2007.01.010 pmid:17314039
13 Rezaei F, Richard T L, Brennan R A, Logan B E. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environmental Science & Technology , 2007, 41(11): 4053–4058
doi: 10.1021/es070426e pmid:17612189
14 Hong S W, Choi Y S, Chung T H, Song J H, Kim H S. Assessment of sediment remediation potential using microbial fuel cell technology. World Academy of Science. Engineering and Technology , 2009, 54: 683–689
15 Hong S W, Chang I S, Choi Y S, Chung T H. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresource Technology , 2009, 100(12): 3029–3035
doi: 10.1016/j.biortech.2009.01.030 pmid:19254835
16 Freguia S, Rabaey K, Yuan Z, Keller J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimica Acta , 2007, 53(2): 598–603
doi: 10.1016/j.electacta.2007.07.037
17 He Z, Angenent L T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis , 2006, 18(19-20): 2009–2015
doi: 10.1002/elan.200603628
18 Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology , 2004, 6(6): 596–604
doi: 10.1111/j.1462-2920.2004.00593.x pmid:15142248
19 Rabaey K, Read S T, Clauwaert P, Freguia S, Bond P L, Blackall L L, Keller J. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. The ISME Journal , 2008, 2(5): 519–527
doi: 10.1038/ismej.2008.1 pmid:18288216
20 Rozendal R A, Jeremiasse A W, Hamelers H V, Buisman C J N. Hydrogen production with a microbial biocathode. Environmental Science & Technology , 2008, 42(2): 629–634
doi: 10.1021/es071720+ pmid:18284174
21 Clauwaert P, van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W. Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science & Technology , 2007, 41(21): 7564–7569
doi: 10.1021/es0709831 pmid:18044542
22 Jankauskas B, Slepetiene A, Jankauskiene G, Fullen M A, Booth C A. Acomparative study of analytical methodologies to determine the soil organic matter content of Lithuanian Eutric Albeluvisols. Geoderma, 2006, 136(3-4): 763–773
23 Song C, Zhang J. Electrocatalytic oxygen reduction reaction. In: Zhang J, ed. PEM Fuel Cell Electrocatalyst and Catalyst Layers. Vancouver: Springer, 2008, 89–134
24 Logan B E. Voltage generation. In: Logan B E, ed. Microbial Fuel Cells. Hoboken: John Wiley & Sons, Inc., 2008, 29–43
25 Zhao F, Slade R C T, Varcoe J R. Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews , 2009, 38(7): 1926–1939
doi: 10.1039/b819866g pmid:19551173
26 Logan B E, Hamelers B, Rozendal R A, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology , 2006, 40(17): 5181–5192
doi: 10.1021/es0605016 pmid:16999087
27 Scott E, Glutaraldehyde S G. Disinfection, sterilization, and preservation. In: Block S S, ed. Measures for Disinfection and Control of Viral Hepatitis. Philadelphia: Lippincott Williams and Wilkins, 1991, 596–616
28 Bergel A, Feron D, Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochemistry Communications , 2005, 7(9): 900–904
doi: 10.1016/j.elecom.2005.06.006
29 Pant D, van Bogaert G, Diels L, Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology , 2010, 101(6): 1533–1543
doi: 10.1016/j.biortech.2009.10.017 pmid:19892549
30 Thygesen A, Poulsen F W, Min B, Angelidaki I, Thomsen A B. The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresource Technology , 2009, 100(3): 1186–1191
doi: 10.1016/j.biortech.2008.07.067 pmid:18815026
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[3] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[4] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[5] Fang Zhang, Hao Zhang, Ying Yuan, Dun Liu, Chenyu Zhu, Di Zheng, Guanghe Li, Yuquan Wei, Dan Sun. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Front. Environ. Sci. Eng., 2020, 14(2): 28-.
[6] Kun Li, Min Yang, Jianfeng Peng, Ruiping Liu, Tista Prasai Joshi, Yaohui Bai, Huijuan Liu. Rapid control of black and odorous substances from heavily-polluted sediment by oxidation: Efficiency and effects[J]. Front. Environ. Sci. Eng., 2019, 13(6): 87-.
[7] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[8] Qian Wang, Qionghua Zhang, Mawuli Dzakpasu, Nini Chang, Xiaochang Wang. Transferral of HMs pollution from road-deposited sediments to stormwater runoff during transport processes[J]. Front. Environ. Sci. Eng., 2019, 13(1): 13-.
[9] Qiang Li, Xiong Xu, Yaoyao Fang, Ruiyang Xiao, Donghong Wang, Wenjue Zhong. The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing[J]. Front. Environ. Sci. Eng., 2018, 12(6): 8-.
[10] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[11] Xiangqun Chi, Yingying Zhang, Daosheng Wang, Feihua Wang, Wei Liang. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45[J]. Front. Environ. Sci. Eng., 2018, 12(1): 11-.
[12] Lei Xia, Guo Liu, Chunmei Chen, Meiyan Wen, Yangyang Gao. Red soil for sediment capping to control the internal nutrient release under flow conditions[J]. Front. Environ. Sci. Eng., 2016, 10(6): 14-.
[13] Wentao Zhao, Ying Guo, Shuguang Lu, Pingping Yan, Qian Sui. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 2-.
[14] Rufeng LI,Chenghong FENG,Dongxin WANG,Baohua LI,Zhenyao SHEN. Multiphase redistribution differences of polycyclic aromatic hydrocarbons (PAHs) between two successive sediment suspensions[J]. Front. Environ. Sci. Eng., 2016, 10(2): 381-389.
[15] Shou ZHAO,Dongxin WANG,Chenghong FENG,Ying WANG,Zhenyao SHEN. Sequence of the main geochemical controls on the Cu and Zn fractions in the Yangtze River estuarine sediments[J]. Front. Environ. Sci. Eng., 2016, 10(1): 19-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed