Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (3) : 320-329    https://doi.org/10.1007/s11783-011-0340-4
RESEARCH ARTICLE
Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl
Fei YU1, Jie MA2, Yanqing WU1()
1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(472 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Multi-walled carbon nanotubes (MWCNTs) were fabricated and oxidized by different concentrations of sodium hypochlorite (NaOCl) solutions. The untreated MWCNTs and modified MWCNTs were employed as adsorbents to study their characterizations and adsorption performance of toluene, ethylbenzene and xylene isomers (TEX) in an aqueous solution. The physicochemical properties of MWCNTs were greatly affected after oxidation, which influences TEX adsorption capacity. The 3% NaOCl-oxidized MWCNTs shows the greatest enhancement in TEX adsorption, followed by the 30% NaOCl. More interestingly, the 15% NaOCl-oxidized MWCNTs has lower adsorption capacities than untreated MWCNTs. The adsorption mechanism of TEX on treated MWCNTs is attributed to the combined action of hydrophobic interaction, π-π bonding interaction between the aromatic ring of TEX and the oxygen-containing functional groups of MWCNTs and electrostatic interaction. 3% NaOCl solution could not only introduce much oxygen-containing functional groups on MWCNTs, but also lead to less damage for the pore structure. This suggests that the CNTs-3% NaOCl is efficient adsorbent for TEX and that they may possess good potential for TEX removal in wastewater treatment.

Keywords adsorption      toluene, ethylbenzene and xylene isomers (TEX)      multi-walled carbon nanotube      surface oxidation     
Corresponding Author(s): WU Yanqing,Email:wuyanqing@sjtu.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Fei YU,Jie MA,Yanqing WU. Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl[J]. Front Envir Sci Eng, 2012, 6(3): 320-329.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0340-4
https://academic.hep.com.cn/fese/EN/Y2012/V6/I3/320
Fig.1  SEM of as-grown CNTs (a) and CNTs-30%NaOCl (b)
Fig.2  Micropore distributions (a) and Mesopore (b) of as-grown CNTs and oxidized MWCNTs
sampleas-grown CNTsCNTs-3%NaOClCNTs-15%NaOClCNTs-30%NaOCl
SA471381327382
ISA136615074
ESA335320277308
PV0.640.580.490.58
APD5.46.05.96.0
Tab.1  Physical properties of as-grown CNTs and oxidized MWCNTs
Fig.3  X-ray diffraction (XRD) patterns of as-grown CNTs and oxidized MWCNTs
Fig.4  Micro-Raman spectra of as-grown CNTs and oxidized MWCNTs
Fig.5  FTIR spectra of as-grown CNTs and oxidized MWCNTs
Fig.6  Adsorption isotherms of TEX on as-grown CNTs and oxidized MWCNTs at pH 7: (a) as-grown CNTs; (b) CNTs-3% NaOCl; (c) CNTs-15% NaOCl; (d) CNTs-30% NaOCl
Langmuir constantsFreundlich constants
qm/(mg·g-1)KL/(L·mg-1)R2KF/(mg·g-1)1/nR2
as-grown CNTs
T44.900.0290.993.8920.480.96
E61.160.0210.973.640.540.94
p-X76.150.0190.993.580.590.93
m-X76.860.0230.964.120.570.88
o-X61.860.0210.973.240.570.91
CNTs-3% NaOCl
T99.470.0100.991.870.730.98
E115.630.0310.989.920.490.95
p-X56.170.1090.989.570.460.91
m-X112.190.0570.9915.090.440.91
o-X75.270.0900.9812.710.430.92
CNTs-15% NaOCl
T31.280.0410.994.280.400.94
E38.400.0470.976.870.340.99
p-X44.600.0480.953.870.590.98
m-X48.580.0690.989.110.360.99
o-X44.420.0350.944.320.490.87
CNTs-30% NaOCl
T59.480.0110.991.220.720.98
E85.490.0070.991.060.780.96
p-X103.400.0080.991.390.770.97
m-X109.780.0090.961.670.760.96
o-X97.390.0130.952.530.690.91
Tab.2  Parameters of the Langmuir and the Fruendlich models for adsorption of TEX on as-grown CNTs and oxidized MWCNTs
1 Iijima S. Helical microtubules of graphitic carbon. Nature , 1991, 354(6348):56–58
2 Britz D A, Khlobystov A N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chemical Society Reviews , 2006, 35(7): 637–659
doi: 10.1039/b507451g pmid:16791335
3 Lu C, Su F, Hu S K. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Applied Surface Science , 2008, 254(21): 7035–7041
doi: 10.1016/j.apsusc.2008.05.282
4 Chen W, Duan L, Zhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology , 2007, 41(24): 8295–8300
doi: 10.1021/es071230h pmid:18200854
5 Woods L M, Bǎdescu S C, Reinecke T L. Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B: Condensed Matter and Materials Physics , 2007, 75(15): 155415
doi: 10.1103/PhysRevB.75.155415
6 Rochefort A, Wuest J D. Interaction of substituted aromatic compounds with graphene. Langmuir , 2009, 25(1): 210–215
doi: 10.1021/la802284j pmid:19053626
7 Hsu S, Lu C. Modification of single-walled carbon nanotubes for enhancing isopropyl alcohol vapor adsorption from air streams. Separation Science and Technology , 2007, 42(12): 2751–2766
8 Su F S, Lu C S, Hu S K. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2010, 353(1): 83–91
doi: 10.1016/j.colsurfa.2009.10.025
9 Chin C J M, Shih L C, Tsai H J, Liu T K. Adsorption of o-xylene and p-xylene from water by SWCNTs. Carbon , 2007, 45(6): 1254–1260
doi: 10.1016/j.carbon.2007.01.015
10 Zhang S, Shao T, Bekaroglu S S K, Karanfil T. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environmental Science & Technology , 2009, 43(15): 5719–5725
doi: 10.1021/es900453e pmid:19731668
11 Gotovac S, Yang C M, Hattori Y, Takahashi K, Kanoh H, Kaneko K. Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. Journal of Colloid and Interface Science , 2007, 314(1): 18–24
doi: 10.1016/j.jcis.2007.04.080 pmid:17604043
12 Cho H H, Smith B A, Wnuk J D, Fairbrother D H, Ball W P. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environmental Science & Technology , 2008, 42(8): 2899–2905
doi: 10.1021/es702363e pmid:18497141
13 Chen J, Chen W, Zhu D Q. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry. Environmental Science & Technology , 2008, 42(19): 7225–7230
doi: 10.1021/es801412j pmid:18939550
14 Liao Q, Sun J, Gao L. Adsorption of chlorophenols by multi-walled carbon nanotubes treated with HNO3 and NH3. Carbon , 2008, 46(3): 553–555
doi: 10.1016/j.carbon.2007.12.009
15 Abdelsalam M, Burk R C. Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multi-walled carbon nanotubes. Applied Surface Science , 2008, 255(5): 1975–1981
doi: 10.1016/j.apsusc.2008.06.168
16 Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z. Adsorption of 1,2- dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters , 2003, 376(1-2): 154–158
doi: 10.1016/S0009-2614(03)00960-6
17 Li X, Chen G. Surface modified graphite nanosheets used as adsorbent to remove 1,2-dichlorobenzene from water. Materials Letters , 2009, 63(11): 930–932
doi: 10.1016/j.matlet.2009.01.042
18 Shen X E, Shan X Q, Dong D M, Hua X Y, Owens G. Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes. Journal of Colloid and Interface Science , 2009, 330(1): 1–8
doi: 10.1016/j.jcis.2008.10.023 pmid:18977488
19 Lin D, Xing B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology , 2008, 42(19): 7254–7259
doi: 10.1021/es801297u pmid:18939555
20 Zhong J, Meng J, Liang X Q, Song L, Zhao T, Xie S S, Ibrahim K, Qian H J, Wang J O, Guo J H, Xu H Y, Wu Z Y. XANES study of phenylalanine and glycine adsorption on single-walled carbon nanotubes. Materials Letters , 2009, 63(3-4): 431–433
doi: 10.1016/j.matlet.2008.11.013
21 Chen G C, Shan X Q, Zhou Y Q, Shen X E, Huang H L, Khan S U. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials , 2009, 169(1-3): 912–918
doi: 10.1016/j.jhazmat.2009.04.034 pmid:19442439
22 Yang K, Xing B. Adsorption of fulvic acid by carbon nanotubes from water. Environ Pollut , 2009, 157(4): 1095–1100
doi: 10.1016/j.envpol.2008.11.007 pmid:19084305
23 Wang X, Tao S, Xing B. Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environmental Science & Technology , 2009, 43(16): 6214–6219
doi: 10.1021/es901062t pmid:19746716
24 Su F, Lu C. Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2007, 42(11): 1543–1552
doi: 10.1080/10934520701513381 pmid:17849295
25 Kuo C Y, Wu C H, Wu J Y. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science , 2008, 327(2): 308–315
doi: 10.1016/j.jcis.2008.08.038 pmid:18786679
26 Wu C H. Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials , 2007, 144(1-2): 93–100
doi: 10.1016/j.jhazmat.2006.09.083 pmid:17081687
27 Eswaramoorthy M, Sen R, Rao C N R. A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chemical Physics Letters , 1999, 304(3-4): 207–210
doi: 10.1016/S0009-2614(99)00311-5
28 Raymundo-Pi?ero E, Aza?s P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon , 2005, 43(4): 786–795
doi: 10.1016/j.carbon.2004.11.005
29 Li Y H, Wang S G, Luan Z K, Ding J, Xu C L, Wu D H. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon , 2003, 41(5): 1057–1062
doi: 10.1016/S0008-6223(02)00440-2
30 Raymundo-Pi?ero E, Cacciaguerra T, Simon P, Béguin F. A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes. Chemical Physics Letters , 2005, 412(1-3): 184–189
doi: 10.1016/j.cplett.2005.06.099
31 Lu C, Su F. Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology , 2007, 58(1): 113–121
doi: 10.1016/j.seppur.2007.07.036
32 Ma J, Wang J N, Wang X X. Large-diameter and water-dispersible single-walled carbon nanotubes synthesis, characterization and applications. Journal of Materials Chemistry , 2009, 19(19): 3033–3041
doi: 10.1039/b820088b
33 Ma J, Wang J N. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chemistry of Materials , 2008, 20(9): 2895–2902
doi: 10.1021/cm8001699
34 Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications. NewYork: Wiley-VCH, 1999
35 Gregg S J, Sing K S W. Adsorption, Surface Area, and Porosity. New York: Academic Press, 1982
36 Almeida C M, Boas L V. Analysis of BTEX and other substituted benzenes in water using headspace SPME-GC-FID: method validation. J of Environ Monit , 2004, 6(1): 80–88
doi: 10.1039/b307053k pmid:14737474
37 Zhu Z Z, Wang Z, Li H L. Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Applied Surface Science , 2008, 254(10): 2934–2940
doi: 10.1016/j.apsusc.2007.10.033
38 Yu Z H, Brus L E. (n, m) Structural assignments and chirality dependence in single-Wall carbon nanotube raman Scattering. Journal of Physical Chemistry B , 2001, 105(29): 6831–6837
doi: 10.1021/jp010853t
39 Souza Filho A G, Jorio A, Samsonidze G G, Dresselhaus G, Pimenta M A, Dresselhaus M S, Swan A K, ünlü M S, Goldberg B B, Saito R. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall nanotubes. Physical Review B , 2003, 67(3): 354271–354277
40 Grüneis A, Saito R, Kimura T, Can?ado L G, Pimenta M A, Jorio A, Souza Filho A G, Dresselhaus G, Dresselhaus M S. Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Physical Review B: Condensed Matter and Materials Physics , 2002, 65(15): 155405–155411
doi: 10.1103/PhysRevB.65.155405
41 Daifullah A A M, Girgis B S. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2003, 214(1-3): 181–193
doi: 10.1016/S0927-7757(02)00392-8
42 Hoferkamp L A, Weber E J. Nitroaromatic reduction kinetics as a function of dominant terminal electron acceptor processes in natural sediments. Environmental Science & Technology , 2006, 40(7): 2206–2212
doi: 10.1021/es051780k pmid:16646454
43 Wang X L, Liu Y, Tao S, Xing B S. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon , 2010, 48(13): 3721–3728
doi: 10.1016/j.carbon.2010.06.034
44 Yang K, Xing B S. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews , 2010, 110(10): 5989–6008
doi: 10.1021/cr100059s pmid:20518459
45 Pan B, Xing B S. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology , 2008, 42(24): 9005–9013
doi: 10.1021/es801777n pmid:19174865
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[5] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[6] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[7] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[8] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[9] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[10] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[11] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[12] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[13] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[14] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[15] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed