Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    0, Vol. Issue () : 299-312    https://doi.org/10.1007/s11783-011-0351-1
FEATURE ARTICLE
The energy-environment nexus: aerosol science and technology enabling solutions
Pratim BISWAS(), Wei-Ning WANG, Woo-Jin AN
Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
 Download: PDF(679 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Energy issues are important and consumption is slated to increase across the globe in the future. The energy-environment nexus is very important as strategies to meet future energy demand are developed. To ensure sustainable growth and development, it is essential that energy production is environmentally benign. There are two temporal issues—one that is immediate, and needs to address the environmental compliance of energy generation from fossil fuel sources; and second that is the need to develop newer alternate and more sustainable approaches in the future. Aerosol science and technology is an enabling discipline that addresses the energy issue over both these time scales. The paper is a review of aspects of aerosol science and engineering that helps address carbon neutrality of fossil fuels. Advanced materials to meet these challenges are discussed. Future approaches to effective harvesting of sunlight that are enabled by aerosol studies are discussed.

Keywords energy-environment nexus      aerosol science and technology      fossil fuels      carbon dioxide conversion      solar energy      nanoparticle technology     
Corresponding Author(s): BISWAS Pratim,Email:pbiswas@wustl.edu   
Issue Date: 05 September 2011
 Cite this article:   
Pratim BISWAS,Wei-Ning WANG,Woo-Jin AN. The energy-environment nexus: aerosol science and technology enabling solutions[J]. Front Envir Sci Eng Chin, 0, (): 299-312.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0351-1
https://academic.hep.com.cn/fese/EN/Y0/V/I/299
Fig.1  Energy portfolios of the US, China, and all nations. Current energy needs are primarily met by fossil fuels (data taken from Energy Information Agency, www.eia.gov and Ref. [])
Fig.2  (a) Atmospheric carbon dioxide concentrations as a function of total global anthropogenic emissions from 1950 to 2006. (b) Cumulative emissions of CO for various nations over the past 100 years. The contributions in 20 year increments are also illustrated. (c) Annual emissions of CO for USA, China and India from 1980 to 2006. China has the highest rate of increase in recent years, and is now the largest emitter of CO (data taken from Ref. [])
Fig.3  Contributions of aerosol science and technology in addressing aspects of the energy and environment nexus
catalystsproducts and conversion ratesreferences
photocatalytic reduction
TiO2 (P25)CH4 (0.24 μmol·g-1·h-1);HCOOH[10]
Cu-TiO2methanol (23.3 μmol·g-1·h-1)[11]
MWCNT-TiO2CH4 (14.66), HCO2H (18.6), C2H5OH; (29.8 μmol·g-1·h-1)[12]
Pt/Cu- N doped TiO2hydrocarbon (4.95 μmol·g-1·h-1)[13]
Ag-TiO2; Cu-Fe-TiO2-SiO2methanol(4.12 μmol·g-1·h-1), methane, ethylene[14]
Ti-β-zeoliteCH4 (24 μmol·g-1·h-1),[15]
TiO2 modified by enzyme and photosentinizerCO (250 μmol·g-1·h-1)[16]
CdSe/Pt/TiO2CH4(48 ppm·g-1·h-1), CH3OH 3.3,trace CO and H2[17]
Cu-TiO2/SiO2CO (60 μmol·g-1·h-1), CH4 (10 μmol·g-1·h-1)[18]
thermocatalytic reduction
Fe3O4CO2 to phenol was found to be as high as 7.6%, and ethanol, acetaldehyde, acetic acid[19]
CeO2-xCO, H2 and CH4 were formed, with production rates of 1.9, 3.8, and 0.2 mL-1·g-1[20,21]
Pd/SrCo0.4Fe0.5Zr0.1O3-dCO (CO2 conversion rate was 15.8%)[22]
electrocatalytic reduction
Aza-macrocylic complexes of Ni(II), Co(II) and Cu(II)CO and/or formic acid are main products[23]
[Pd(triphosphine)-(CH3CN)]2+CO was the main product.[24,25]
Tab.1  A brief summary of various catalytic reactions for CO reduction
Fig.4  CO photoreduction with Cu-TiO/SiO particles with different Cu loadings prepared by a sol-gel method (adopted from Ref.[])
Fig.5  Experimental setup of furnace aerosol reactor system and a possible formation mechanism for Cu-TiO/SiO mesoporous composites
Fig.6  A typical Cu-TiO/SiO mesoporous particle prepared by the FuAR method at 800°C. The figure shows a TEM image, pore size distribution and adsorption/desorption curves of the particle
Fig.7  CO yields as functions of molar percentages of TiO (a), Cu (b), and total concentration (c) of the Cu-TiO/SiO mesoporous particles prepared by the FuAR method (adopted from Ref.[])
Fig.8  Characteristic time conditions for different film deposition processes: CVD, IPD, and APD [adopted from ].
Fig.9  Thin film growth mechanism with respect to the characteristic time for sintering and the time between arrival of deposited particles in ACVD (a) and SEM images of resulting TiO films (b)
Fig.10  The concept of a nano-bio hybrid device to harvest sunlight; and structure of the chlorosome (a) and schematic of a novel nanobiohybrid solar cells (b)
1 Cabrera S, Jaffe K. On the energetic cost of human societies: Energy consumption as an econometric index. Interciencia , 1998, 23(6): 350–354
2 Thimsen E J. Metal Oxide Semiconductors for Solar Energy Harvesting. Dissertation for the Doctoral Degree. St . Louis: Washington University in St. Louis, 2009
3 United Nations Development Program. Energizing the Millennium Development Goals: A Guild to Energy’s Role in Reducing Poverty, 2005
4 Zakaria F. The Post-American World. 1st ed . New York: W.W. Norton & Co., 2008
5 McDonnell Academy Global Energy and Environmental Partnership (MAGEEP). Report on Global Energy Future. http://mageep.wustl.edu. St. Louis: Washington University in St. Louis, 2010
6 Metz B, Davidson O, de Coninck H, Loos M, Meyer C. IPCC Special Report on Carbon Dioxide Capture and Storage. New York , 2005
7 Roy S C, Varghese O K, Paulose M, Grimes C A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano , 2010, 4(3): 1259–1278
doi: 10.1021/nn9015423 pmid:20141175
8 Halmann M, Steinberg M. Greenhous Gas Carbon Dioxide Mitigation: Science and Technology. Boca Raton: Lewis Publishers, 2000
9 Usubharatana P, McMartin D, Veawab A, Tontiwachwuthikul P. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research , 2006, 45(8): 2558–2568
doi: 10.1021/ie0505763
10 Kaneco S, Shimizu Y, Ohta K, Mizuno T. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry 1998, 115(3): 223–226
11 Tseng I H, Chang W C, Wu J C S. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental , 2002, 37(1): 37–48
doi: 10.1016/S0926-3373(01)00322-8
12 Xia X H, Jia Z H, Yu Y, Liang Y, Wang Z, Ma L L. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon , 2007, 45(4): 717–721
doi: 10.1016/j.carbon.2006.11.028
13 Varghese O K, Paulose M, Latempa T J, Grimes C A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters , 2009, 9(2): 731–737
doi: 10.1021/nl803258p pmid:19173633
14 Wu J C S. Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel. Catalysis Surveys from Asia , 2009, 13(1): 30–40
doi: 10.1007/s10563-009-9065-9
15 Ikeue K, Yamashita H, Anpo M, Takewaki T. Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. Journal of Physical Chemistry B , 2001, 105(35): 8350–8355
doi: 10.1021/jp010885g
16 Woolerton T W, Sheard S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. Journal of the American Chemical Society , 2010, 132(7): 2132–2133
doi: 10.1021/ja910091z pmid:20121138
17 Wang C J, Thompson R L, Baltrus J, Matranga C. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. Journal of Physical Chemistry Letters , 2010, 1(1): 48–53
doi: 10.1021/jz9000032
18 Li Y, Wang W N, Zhan Z L, Woo M H, Wu C Y, Biswas P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental , 2010, 100(1–2): 386–392
doi: 10.1016/j.apcatb.2010.08.015
19 Chen Q, Qian Y. Carbon dioxide thermal system: an effective method for the reduction of carbon dioxide. Chemical Communications , 2001, 15: 1402–1403
doi: 10.1039/b100183n
20 Chueh W C, Falter C, Abbott M, Scipio D, Furler P, Haile S M, Steinfeld A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science , 2010, 330(6012): 1797–1801
doi: 10.1126/science.1197834 pmid:21205663
21 Chueh W C, Haile S M. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. ChemSusChem , 2009, 2(8): 735–739
doi: 10.1002/cssc.200900138 pmid:19637255
22 Jin W Q, Zhang C, Chang X F, Fan Y Q, Xing W H, Xu N P. Efficient catalytic decomposition of CO2 to CO and O2 over Pd/ mixed-conducting oxide catalyst in an oxygen-permeable membrane reactor. Environmental Science & Technology , 2008, 42(8): 3064–3068
doi: 10.1021/es702913f pmid:18497167
23 Isaacs M, Canales J C, Aguirre M J, Estiu G, Caruso F, Ferraudi G, Costamagna J. Electrocatalytic reduction of CO2 by aza- macrocyclic complexes of Ni(II), Co(II), and Cu(II). Theoretical contribution to probable mechanisms. Inorganica Chimica Acta , 2002, 339: 224–232
doi: 10.1016/S0020-1693(02)00942-8
24 Siwek H, Tokarz W, Piela P, Czerwinski A. Electrochemical behavior of CO, CO2 and methanol adsorption products formed on Pt-Rh alloys of various surface compositions. Journal of Power Sources , 2008, 181(1): 24–30
doi: 10.1016/j.jpowsour.2007.11.033
25 Raebiger J W, Turner J W, Noll B C, Curtis C J, Miedaner A, Cox B, DuBois D L. Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics , 2006, 25(14): 3345–3351
doi: 10.1021/om060228g
26 Kim J S, Ahn J R. Characterization of wet processed (Ni, Zn)-ferrites for CO2 decomposition. Journal of Materials Science , 2001, 36(19): 4813–4816
doi: 10.1023/A:1017999610010
27 Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. Journal of Catalysis , 2009, 266(1): 92–97
doi: 10.1016/j.jcat.2009.05.018
28 Scibioh M A, Vijayaraghavan V R. Electrocatalytic reduction of carbon dioxide: Its relevance and importance. Journal of Scientific and Industrial Research , 1998, 57(3): 111–123
29 Siwek H, Lukaszewski M, Czerwiński A. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys. Physical Chemistry Chemical Physics , 2008, 10(25): 3752–3765
doi: 10.1039/b718286b pmid:18563236
30 Pandey K K. Reactivities of carbonyl sulfide (CoS), carbon-disulfide (CS2) and carbon-dioxide (CO2) with transition-metal complexes. Coordination Chemistry Reviews , 1995, 140: 37–114
doi: 10.1016/0010-8545(94)01120-Z
31 Dubois D L. Development of transition metal phosphine complexes as electrocatalysts for CO2 and CO reduction. Comments on Inorganic Chemistry , 1997, 19(5): 307–325
doi: 10.1080/02603599708032743
32 Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today , 2006, 115(1–4): 2–32
doi: 10.1016/j.cattod.2006.02.029
33 Kitano M, Matsuoka M, Ueshima M, Anpo M. Recent developments in titanium oxide-based photocatalysts. Applied Catalysis A, General , 2007, 325(1): 1–14
doi: 10.1016/j.apcata.2007.03.013
34 Indrakanti V P, Kubicki J D, Schobert H H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy & Environmental Science , 2009, 2(7): 745–758
doi: 10.1039/b822176f
35 Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature , 1979, 277(5698): 637–638
doi: 10.1038/277637a0
36 Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. Journal of Physical Chemistry B , 1997, 101(14): 2632–2636
doi: 10.1021/jp962696h
37 Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang S G, Ichihashi Y, Park D R, Suzuki Y, Koyano K, Tatsumi T. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today , 1998, 44(1–4): 327–332
doi: 10.1016/S0920-5861(98)00206-5
38 Yamashita H, Honda M, Harada M, Ichihashi Y, Anpo M, Hirao T, Itoh N, Iwamoto N. Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water. Journal of Physical Chemistry B , 1998, 102(52): 10707–10711
doi: 10.1021/jp982835q
39 Ogawa M, Ikeue K, Anpo M. Transparent self-standing films of titanium-containing nanoporous silica. Chemistry of Materials , 2001, 13(9): 2900–2904
doi: 10.1021/cm0102281
40 Nguyen T V, Wu J C S. Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. Solar Energy Materials and Solar Cells , 2008, 92(8): 864–872
doi: 10.1016/j.solmat.2008.02.010
41 Anpo M, Zhang S G, Mishima H, Matsuoka M, Yamashita H. Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature. Catalysis Today , 1997, 39(3): 159–168
doi: 10.1016/S0920-5861(97)00097-7
42 Yamashita H, Nishiguchi H, Kamada N, Anpo M, Teraoka Y, Hatano H, Ehara S, Kikui K, Palmisano L, Sclafani A, Schiavello M, Fox M A. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Research on Chemical Intermediates , 1994, 20(8): 815–823
doi: 10.1163/156856794X00568
43 Ishitani O,Inoue C, Suzuki Y, Ibusuki T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal deposited TiO2. Journal of Photochemistry and Photobiology A: Chemistry 1993, 72 (3), 269–271
44 Ikeue K, Nozaki S, Ogawa M, Anpo M. Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catalysis Today , 2002, 74(3–4): 241–248
doi: 10.1016/S0920-5861(02)00027-5
45 Basak S, Rane K S, Biswas P. Hydrazine-assisted, low-temperature aerosol pyrolysis method to synthesize gamma-Fe2O3. Chemistry of Materials , 2008, 20(15): 4906–4914
doi: 10.1021/cm800034g
46 Wang W N, Widiyastuti W, Ogi T, Lenggoro I W, Okuyama K. Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chemistry of Materials , 2007, 19(7): 1723–1730
doi: 10.1021/cm062887p
47 Wang W N, Park J, Biswas P. Rapid synthesis of nanostructured Cu-TiO2-SiO2 composites for CO2 photoreduction by evaporation driven self-assembly. Catalysis Science and Technology , 2011, 1(4): 593–600
doi: 10.1039/c0cy00091d
48 Wang W N, Iskandar F, Okuyama K, Shinomiya Y. Rapid synthesis of non-aggregated fine chloroapatite blue phosphor powders with high quantum efficiency. Advanced Materials , 2008, 20(18): 3422–3426
doi: 10.1002/adma.200800415
49 Wang W N, Kaihatsu Y, Iskandar F, Okuyama K. Highly luminous hollow chloroapatite phosphors formed by a template-free aerosol route for solid-state lighting. Chemistry of Materials , 2009, 21(19): 4685–4691
doi: 10.1021/cm9018327
50 Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science , 2003, 265(2): 296–303
doi: 10.1016/S0021-9797(03)00519-8 pmid:12962663
51 Sen D, Mazumder S, Melo J S, Khan A, Bhattyacharya S, D’Souza S F. Evaporation driven self-assembly of a colloidal dispersion during spray drying: volume fraction dependent morphological transition. Langmuir , 2009, 25(12): 6690–6695
doi: 10.1021/la900160z pmid:19323504
52 Chang S T, Velev O D. Evaporation-induced particle microseparations inside droplets floating on a chip. Langmuir , 2006, 22(4): 1459–1468
doi: 10.1021/la052695t pmid:16460062
53 Iskandar F, Chang H W, Okuyama K. Preparation of microencapsulated powders by an aerosol spray method and their optical properties. Advanced Powder Technology , 2003, 14(3): 349–367
doi: 10.1163/15685520360685983
54 Wang W N, Purwanto A, Lenggoro I W, Okuyama K, Chang H, Jang H D. Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Industrial & Engineering Chemistry Research , 2008, 47(5): 1650–1659
doi: 10.1021/ie070821d
55 Kay A, Cesar I, Gr?tzel M. New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. Journal of the American Chemical Society , 2006, 128(49): 15714–15721
doi: 10.1021/ja064380l pmid:17147381
56 Barreca D, Fornasiero P, Gasparotto A, Gombac V, Maccato C, Montini T, Tondello E. The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. ChemSusChem , 2009, 2(3): 230–233
doi: 10.1002/cssc.200900032 pmid:19235823
57 Su J, Feng X, Sloppy J D, Guo L, Grimes C A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Letters , 2011, 11(1): 203–208
doi: 10.1021/nl1034573 pmid:21114333
58 Su J Z, Guo L J, Yoriya S, Grimes C A. Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: application to photoelectrochemical water splitting. Crystal Growth & Design , 2010, 10(2): 856–861
doi: 10.1021/cg9012125
59 Thimsen E, Biswas S, Lo C S, Biswas P. Predicting the band structure of mixed transition metal oxides: theory and experiment. Journal of Physical Chemistry C , 2009, 113(5): 2014–2021
doi: 10.1021/jp807579h
60 Wolcott A, Smith W A, Kuykendall T R, Zhao Y P, Zhang J Z. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Advanced Functional Materials , 2009, 19(12): 1849–1856
doi: 10.1002/adfm.200801363
61 Wang H L, Deutsch T, Turner J A. Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. Journal of the Electrochemical Society , 2008, 155(5): F91–F96
doi: 10.1149/1.2888477
62 Zhang Z J, Zhao Y, Zhu M M. NiO films consisting of vertically aligned cone-shaped NiO rods. Applied Physics Letters , 2006, 88(3): 033101
doi: 10.1063/1.2166479 pmid:19738916
63 Mor G K, Varghese O K, Wilke R H T, Sharma S, Shankar K, Latempa T J, Choi K S, Grimes C A. P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Letters , 2008, 8(7): 1906–1911
doi: 10.1021/nl080572y pmid:18540655
64 Khaselev O, Turner J A. A monolithic photovoltaic- photoelectrochemical device for hydrogen production via water splitting. Science , 1998, 280(5362): 425–427
doi: 10.1126/science.280.5362.425 pmid:9545218
65 Sivula K, Le Formal F, Gratzel M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chemistry of Materials , 2009, 21(13): 2862–2867
doi: 10.1021/cm900565a
66 van de Krol R, Liang Y Q, Schoonman J. Solar hydrogen production with nanostructured metal oxides. Journal of Materials Chemistry , 2008, 18(20): 2311–2320
doi: 10.1039/b718969a
67 Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews , 2010, 110(11): 6446–6473
doi: 10.1021/cr1002326 pmid:21062097
68 Gr?tzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry , 2005, 44(20): 6841–6851
doi: 10.1021/ic0508371 pmid:16180840
69 Yun H J, Lee H, Joo J B, Kim W, Yi J. Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. Journal of Physical Chemistry C , 2009, 113(8): 3050–3055
doi: 10.1021/jp808604t
70 Takahashi M, Tsukigi K, Uchino T, Yoko T. Enhanced photocurrent in thin film TiO2 electrodes prepared by sol-gel method. Thin Solid Films , 2001, 388(1–2): 231–236
doi: 10.1016/S0040-6090(01)00811-2
71 Thimsen E, Rastgar N, Biswas P. Nanostructured TiO2 films with controlled morphology synthesized in a single step process: Performance of dye-sensitized solar cells and photo watersplitting. Journal of Physical Chemistry C , 2008, 112(11): 4134–4140
doi: 10.1021/jp710422f
72 Aduda B O, Ravirajan P, Choy K L, Nelson J. Effect of morphology on electron drift mobility in porous TiO2. International Journal of Photoenergy , 2004, 6(3): 141–147
73 Choi K S. Shape effect and shape control of polycrystalline semiconductor electrodes for use in photoelectrochemical cells. Journal of Physical Chemistry Letters , 2010, 1(15): 2244–2250
doi: 10.1021/jz100629n
74 Kim B, Byun D, Lee J K, Park D, Structural analysis on photocatalytic efficiency of TiO2 by chemical vapor deposition. Japanese Journal of Applied Physics Part 1–Regular Papers Short Notes & Review Papers . 2002, 41(1), 222–226
75 An W J, Thimsen E, Biswas P. Aerosol-chemical vapor deposition method for synthesis of nanostructured metal oxide thin films with controlled morphology. Journal of Physical Chemistry Letters , 2010, 1(1): 249–253
doi: 10.1021/jz900156d
76 Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society , 2009, 131(11): 3985–3990
doi: 10.1021/ja8078972 pmid:19245201
77 Liu S Q, Huang K L. Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Solar Energy Materials and Solar Cells , 2005, 85(1): 125–131
78 Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Enhanced photocleavage of water using titania nanotube arrays. Nano Letters , 2005, 5(1): 191–195
doi: 10.1021/nl048301k pmid:15792438
79 Wolcott A, Smith W A, Kuykendall T R, Zhao Y P, Zhang J Z. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small , 2009, 5(1): 104–111
doi: 10.1002/smll.200800902 pmid:19040214
80 Wu J J, Yu C C. Aligned TiO2 nanorods and nanowalls. Journal of Physical Chemistry B , 2004, 108(11): 3377–3379
doi: 10.1021/jp0361935
81 Thimsen E, Biswas P. Nanostructured photoactive films synthesized by a flame aerosol reactor. AIChE Journal. 2007, 53(7): 1727–1735
doi: 10.1002/aic.11210
82 Kodas T T, Hampden-Smith M J. Aerosol Processing of Materials. New York: Wiley-VCH, 1999
83 Biswas P, Wu C Y. Control of toxic metal emissions from combustors using sorbents: a review. Journal of the Air & Waste Management Association , 1995, 48(2): 113–127
84 Zhan Z L, Wang W N, Zhu L Y, An W J, Biswas P. Flame aerosol reactor synthesis of nanostructured SnO2 thin films High gas-sensing properties by control of morphology. Sensors and Actuators. B, Chemical , 2010, 150(2): 609–615
doi: 10.1016/j.snb.2010.08.032
85 An W J, Jiang D D, Matthews J R, Borrelli F, Biswas P. Thermal conduction effects impacting morphology during synthesis of columnar nanostructured TiO2 thin films. Journal of Materials Chemistry , 2011, 21(22): 7913–7921
doi: 10.1039/c0jm04563b
86 Kulkarni P, Biswas P. Morphology of nanostructured films for environmental applications: Simulation of simultaneous sintering and growth. Journal of Nanoparticle Research , 2003, 5(3–4): 259–268
doi: 10.1023/A:1025534815540
87 Kulkarni P, Biswas P. A Brownian dynamics simulation to predict morphology of nanoparticle deposits in the presence of interparticle interactions. Aerosol Science and Technology , 2004, 38(6): 541–554
doi: 10.1080/02786820490466747
88 Gratzel M. Photovoltaic and photoelectrochemical conversion of solar energy. Philosophical Transactions of the Royal Society A–Mathematical Physical and Engineering Sciences , 2007, 365(1853): 993–1005
89 Jeong S, Aydil E S. Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition. Journal of Crystal Growth , 2009, 311(17): 4188–4192
doi: 10.1016/j.jcrysgro.2009.07.020
90 McShane C M, Siripala W P, Choi K S. Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells. Journal of Physical Chemistry Letters , 2010, 1(18): 2666–2670
doi: 10.1021/jz100991e
91 Yuhas B D, Yang P D. Nanowire-based all-oxide solar cells. Journal of the American Chemical Society , 2009, 131(10): 3756–3761
doi: 10.1021/ja8095575 pmid:19275263
92 O’regan B, Gratzel M, Low-Cost A. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
93 Nozik A J. Quantum dot solar cells. Physica E, Low-Dimensional Systems and Nanostructures , 2002, 14(1–2): 115–120
doi: 10.1016/S1386-9477(02)00374-0
94 Debnath R, Tang J, Barkhouse D A, Wang X H, Pattantyus-Abraham A G, Brzozowski L, Levina L, Sargent E H. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. Journal of the American Chemical Society , 2010, 132(17): 5952–5953
doi: 10.1021/ja1013695 pmid:20387887
95 Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, Wang X H, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin M K, Gr?tzel M, Sargent E H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano , 2010, 4(6): 3374–3380
doi: 10.1021/nn100335g pmid:20496882
96 Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society , 2007, 129(14): 4136–4137
doi: 10.1021/ja070099a pmid:17373799
97 Robel I, Subramanian V, Kuno M, Kamat P V. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society , 2006, 128(7): 2385–2393
doi: 10.1021/ja056494n pmid:16478194
98 Tang K H, Zhu L Y, Urban V S, Collins A M, Biswas P, Blankenship R E. Temperature and ionic strength effects on the chlorosome light-harvesting antenna complex. Langmuir , 2011, 27(8): 4816–4828
doi: 10.1021/la104532b pmid:21405043
99 Modesto-Lopez L B, Thimsen E J, Collins A M, Blankenship R E, Biswas P. Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy & Environmental Science , 2010, 3(2): 216–222
doi: 10.1039/b914758f
[1] Zhengyang Huo, Young Jun Kim, Yuying Chen, Tianyang Song, Yang Yang, Qingbin Yuan, Sang Woo Kim. Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energy[J]. Front. Environ. Sci. Eng., 2023, 17(10): 118-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed