Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (3) : 435-444    https://doi.org/10.1007/s11783-011-0352-0
RESEARCH ARTICLE
A 50-year sedimentary record of heavy metals and their chemical speciations in the Shuangtaizi River estuary (China): implications for pollution and biodegradation
Baolin LIU1(), Ke HU1, Zhenglong JIANG1, Fengge QU2, Xin SU1
1. School of Marine Sciences, China University of Geosciences, Beijing 100083, China; 2. Pingdingshan Uinversity, Pingdingshan 467000, China
 Download: PDF(428 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two parallel sediment cores collected from tidal flat located in the Shuangtaizi River estuary were analyzed for heavy metal concentrations and chemical speciations. Based on the 137Cs activity profile, mean sedimentation rate at the sampling site during the past 50 years was estimated to be 1.3 cm·a-1. Correlation analyses show that almost all the metals are associated with each other, suggesting that these metals might be derived from same sources and/or affected by same geochemical processes. Influence of total organic carbon (TOC) content on the concentrations of Cr, Ni, Cu and Cd is evident. Silt and clay contents, instead of sand content, play an important role in the distribution of these metals. The dominant binding phases for most of the metals (except for Cd) are the residual. The relative decrease of the residual fraction of Cd and Pb in the upper 66 cm of the core is striking. The distribution of chemical fraction confirms that the residual fractions of these metals have a natural origin, while only the non-residual fractions of Cd and Pb increased upward the core due to pollution in the past five decades. Pollution assessment on these heavy metals based on Index of Geoaccumulation (Igeo) also demonstrates that most of the metals are unpolluted. The weak pollution as observed in the sediments is perhaps related to a local plant, the Suaeda heteroptera Kitag, which may have played a significant role in the biodegradation of these metals and the metal distribution in the estuary.

Keywords Shuangtaizi River estuary      sediment core      heavy metals      pollution     
Corresponding Author(s): LIU Baolin,Email:liubaolin@cugb.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Baolin LIU,Ke HU,Zhenglong JIANG, et al. A 50-year sedimentary record of heavy metals and their chemical speciations in the Shuangtaizi River estuary (China): implications for pollution and biodegradation[J]. Front Envir Sci Eng Chin, 2011, 5(3): 435-444.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0352-0
https://academic.hep.com.cn/fese/EN/Y2011/V5/I3/435
Fig.1  Geographic map showing study area and sampling location map
elementcertified value/(mg·kg-1)measured value/(mg·kg-1)recovery/%
V120121.4101.2
Cr8792.19106.0
Co11.710.892.3
Ni2632.1123.5
Cu177173.397.9
Zn5250.3896.9
Cd0.10.115115.0
Pb4040.71101.8
Tab.1  Method accuracy and recovery of measured heavy metals in standard sediment (GBW 07303)
Fig.2  Down core variations of Cs in the sediment core PJII (the data come from [])
Fig.3  Down core variations of mean grain size (Mz), contents of sand, silt and clay, pH and TOC in the sediment core PJI (the particle size data come from Ref. [])
sediment sampleVCrCoNiCuZnCdPb
D170.953.110.825.722.168.60.3221.9
D273.856.210.926.522.271.50.2922.5
D374.557.311.529.123.473.70.3023.5
D480.960.112.630.627.280.10.3124.9
D580.960.712.331.425.277.70.2322.5
D683.965.012.832.626.785.00.2825.9
D773.853.411.426.922.169.20.2322.5
D876.655.611.627.823.172.80.2923.2
D971.552.510.826.322.267.60.2822.1
D1071.153.210.625.621.768.50.2821.8
D1168.249.810.223.819.960.00.2321.8
D1237.526.55.612.39.930.30.1215.1
D1355.941.78.320.416.050.60.1918.3
D1461.043.48.821.017.056.00.2019.6
D1571.454.310.240.820.061.70.1620.9
D1668.052.49.825.119.654.80.1219.4
D1758.247.77.419.214.443.40.0716.8
D1853.541.87.718.814.643.30.1017.6
D1954.841.17.317.014.242.00.0816.8
D2061.744.38.921.017.650.40.1018.8
mean (20)67.450.510.025.119.961.40.2120.8
maximum83.965.012.840.827.285.00.3225.9
minimum37.526.55.612.39.930.30.0715.1
STD11.48.82.06.44.614.60.082.9
background of marine sediments in the Liaodong Bay [18]NANANANA19.257.00.04211.5
background in Chinese coastal areas [19]NANANANA3080NA25
background of soil in Liaoning Province [17]8659172721590.120
Tab.2  Concentrations of heavy metals in the sediment core (PJI) from the Shuangtaizi River estuary and their corresponding background values/(mg·kg)
Fig.4  Down core variations of heavy metals in the sediment core PJI (the data come from Ref. [])
VCrCoNiCuZnCdPbClaySiltSandTOCpH
V1.00
Cr0.981.00
Co0.980.951.00
Ni0.850.850.821.00
Cu0.980.951.000.801.00
Zn0.970.940.990.800.991.00
Cd0.730.670.810.550.810.861.00
Pb0.950.910.980.780.970.980.861.00
clay0.410.400.460.240.460.510.580.511.00
silt0.570.550.560.530.520.570.440.470.251.00
sand-0.61-0.60-0.64-0.47-0.61-0.68-0.65-0.63-0.82-0.761.00
TOC0.430.480.420.530.450.410.460.430.110.12-0.141.00
pH-0.55-0.55-0.61-0.54-0.62-0.63-0.73-0.66-0.24-0.360.37-0.761.00
Tab.3  Correlation matrix among the heavy metals concentrations, grain size, pH and TOC ( = 20) of the sediments
Fig.5  Chemical fraction variations of heavy metals in the sediment core PJI
1 Szefer P, Glassby G P, Pempkowiak J. Extraction studies of heavy metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chemical Geology , 1995, 120: 111–126
doi: 10.1016/0009-2541(94)00103-F
2 Zhang J, Liu C L. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science , 2002, 54: 1051–1070
doi: 10.1006/ecss.2001.0879
3 State Ocean Bureau. Bulletin of Marine Environment Quality of China in 2008. Beijing , 2009 (in Chinese)
4 Zhou X Y, Wang E D, Zhu E J. Evaluation on heavy metal pollution in the sediments at the river mouths around Liaodong Bay. Environmental Chemistry , 2004a, 23(3): 321–325 (in Chinese)
5 Zhou X Y, Wang E D, Liu X Y, Wang W M. Environmental geochemistry of heavy metals in bottom sediments of river mouths in Liaodong Bay. Geochimica , 2004b, 33(3): 286–290 (in Chinese)
6 Feng M H, Long J P, Yu L, Li J J. Ecological risk evaluation of heavy metals of marine sediment in Liaodong Bay shallow waters. Marine Sciences , 2003, 27(3): 52–56 (in Chinese)
7 Sun S H, Wang D Y, Hu K, Yang J P, Wei N. Evaluation on pollution of heavy metal in the water and its analysis of ecological effect in Shuangtaizi estuary district. Global Geology , 2007, 26(1): 75–79 (in Chinese)
8 Wan L, Wang N B, Li Q B, Zhou Z C, Sun B, Xue K, Ma Z Q, Tian J, Du N. Estival distribution of dissolved metal concentrations in Liaodong Bay. Bulletin of Environmental Contamination and Toxicology , 2008, 80(4): 311–314 18309448
doi: 10.1007/s00128-008-9376-y
9 Cuong D T, Obbard J P. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Applied Geochemistry , 2006, 21(8): 1335–1346
doi: 10.1016/j.apgeochem.2006.05.001
10 Gaudette H E, Flight W, Tones L, Folger D. An inexpensive titration method for the determinations of organic carbon in recent sediments. Journal of Sedimentary Research , 1974, 44(1): 249–253
11 Jouanneau J M, Castaing P, Grousset F, Buat-Ménard P, Pedemay P. Recording and chronology of a cadmium contamination by 137Cs in the Gironde estuary (SW France). Comptes Rendus de L’acadé mie des Sciences-Series IIA-Earth and Planetary Science , 1999, 329(4): 265–270
12 Cundy A B, Sprague D, Hopkinson L, Maroukian H, Gaki-Papanastassiou K, Papanastassiou D, Frogley M R. Geochemical and stratigraphic indicators of late Holocene coastal evolution in the Gythio area, southern Peloponnese, Greece. Marine Geology , 2006, 230(3-4): 161–177
doi: 10.1016/j.margeo.2006.04.009
13 Liu B L, Hu K, Xu X L, Liu X M, Fang F. Sedimentary record of heavy metal pollution in the Shuangtaizi estuary. Marine Sciences , 2010, 34(4): 84–88 (in Chinese)
14 Zhao C Y, Liu Q M, Li J. Studies on climate in Liaoning Province in recent 48 years. Meteorological Monographs , 2000, 26(5): 32–35 (in Chinese)
15 Liu C, He Y, Zhang H Y. Trend analysis of the water and sediment loads of the main rivers in China using water-sediment diagram. Advances in Water Science , 2008, 19(3): 317–324 (in Chinese)
16 Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Research , 1957, 27(1): 3–26
17 China Environmental Monitoring Station. Natural Background Values of Soil Elements in China. Beijing: China Environmental Science Press, 1990 (in Chinese)
18 Hao J, Li S Y, Zhou Y Z, Liu J. Preliminary study on the background of Cu, Pb, Zn and Cd in sediment of the Liaodong bay in the Bohai Sea. Acta Oceanologica Sinica , 1989, 11(6): 742–748 (in Chinese)
19 Zheng Q H, Liang Z Q, He Y Q, Wen W Y. Geochemical behaviour of the pollutants in surface sediments of Daya Bay. Journal of Tropical Oceanography , 1992, 11(1): 65–71 (in Chinese)
20 Morillo J, Usero J, Gracia I. Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere , 2004, 55(3): 431–442 14987942
doi: 10.1016/j.chemosphere.2003.10.047
21 Guevara-Riba A, Sahuquillo A, Rubio R, Rauret G. Assessment of metal mobility in dredged harbour sediments from Barcelona, Spain. Science of the Total Environment , 2004, 321(1-3): 241–255 15050399
doi: 10.1016/j.scitotenv.2003.08.021
22 Yuan C G, Shi J B, He B, Liu J F, Liang L N, Jiang G B. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International , 2004, 30(6): 769–783 15120195
doi: 10.1016/j.envint.2004.01.001
23 Budimir S, Marko B. Distribution of Cd, Pb, Cu and Zn in carbonate sediments from the Krka River estuary obtained by sequential extraction. Science of the Total Environment , 1995, 170(1-2): 101–118
doi: 10.1016/0048-9697(95)04607-3
24 Pickering W F. Metal ion speciation—ssoil and sediments (a review). Ore Geology Reviews , 1986, 1: 83–146
doi: 10.1016/0169-1368(86)90006-5
25 Li X D, Shen Z G, Wai O W H, Li Y S. Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River estuary. Marine Pollution Bulletin , 2001, 42(3): 215–223 11381876
doi: 10.1016/S0025-326X(00)00145-4
26 Ramos L, Hernandez L M, Gonzalez M J. Sequential fractionation of copper, lead, cadmium and zinc in the soil from or near Donana National Park. Journal of Environmental Quality , 1994, 23(1): 50–57
doi: 10.2134/jeq1994.00472425002300010009x
27 Norvell W A, Wu J, Hopkins D G, Welch R M. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Science Society of America Journal , 2000, 64(6): 2162–2168
doi: 10.2136/sssaj2000.6462162x
28 Morillo J, Usero J, Gracia I. Partitioning of metals in sediments from the Odiel River (Spain). Environment International , 2002, 28(4): 263–271 12220112
doi: 10.1016/S0160-4120(02)00033-8
29 Bird G, Brewer P A, Macklin M G, Serban M, Balteanu D, Driga B. Heavy metal contamination in the Aries river catchment, western Romania: implications for development of the Rosia Montana gold deposit. Journal of Geochemical Exploration , 2005, 86: 26–34
doi: 10.1016/j.gexplo.2005.02.002
30 Müller G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal , 1969, 2(3): 108–118
31 Rubio B, Nombela M A, Vilas F. Geochemistry of major trace elements in sediments of the Ria de vigo (NW Spain) an assessment of metal pollution. Marine Pollution Bulletin , 2000, 40(11): 968–980
doi: 10.1016/S0025-326X(00)00039-4
32 Gao S, Luo T C, Zhang B R, Zhang H F, Han Y W, Zhao Z D, Hu Y K. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta , 1998, 62(11): 1959–1975
doi: 10.1016/S0016-7037(98)00121-5
33 Nriagu J O. Human influence on the global cycling of trace metals. In: Farmer J D,. ed. Heavy Metals in the Environment , Vol 1. Edinburgh: CEP Consultants, 1991, 1–5
34 Xu B, Yang X B, Gu Z Y, Zhang Y H, Chen Y F, Lv Y W. The trend and extent of heavy metal accumulation over last one hundred years in the Liaodong Bay, China. Chemosphere , 2009b, 75(4): 442–446 19201441
doi: 10.1016/j.chemosphere.2008.12.067
35 Zhang X L. Investigation of pollution of Pb, Cd, Hg, As in sea water and deposit of Bohai sea area. Heilongjiang Environmental Journal , 2001, 25(3): 87–90 (in Chinese)
36 Xu B, Gu Z Y, Han J T, Zhang Y H, Chen Y F, Lu Y W. Sequential extractions and isotope analysis for discriminating the chemical forms and origins of Pb in sediment from Liaodong Bay, China. Archives of Environmental Contamination and Toxicology , 2009a, 57(2): 230–238 19057834
doi: 10.1007/s00244-008-9268-5
37 Zhu M H, Ding Y S, Zheng D C, Tao P. Accumulation and tolerance of Cu, Zn, Pb and Cd in plant Suaeda heteroptera Kitag in tideland. Marine Environmental Science , 2005, 24(2): 13–16 (in Chinese)
38 Zhu H Z, Hou W F, Li Z B, Zhu Q H. Suaeda heteroptera degradation in the estuary of Shuangtaizi River. Chinese Journal of Soil Science , 2006, 37(6): 1191–1194 (in Chinese)
[1] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[2] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[3] Fengping Hu, Yongming Guo. Health impacts of air pollution in China[J]. Front. Environ. Sci. Eng., 2021, 15(4): 74-.
[4] Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long. Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity[J]. Front. Environ. Sci. Eng., 2021, 15(2): 31-.
[5] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[6] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[7] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[8] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[9] Youfen Xu, Zong Li, Ruyin Liu, Hongxia Liang, Zhisheng Yu, Hongxun Zhang. Validation of Bacteroidales-based microbial source tracking markers for pig fecal pollution and their application in two rivers of North China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 67-.
[10] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
[11] Xuying Ma, Ian Longley, Jennifer Salmond, Jay Gao. PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python[J]. Front. Environ. Sci. Eng., 2020, 14(3): 44-.
[12] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[13] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[14] Chao Liu, Hancheng Dai, Lin Zhang, Changchun Feng. The impacts of economic restructuring and technology upgrade on air quality and human health in Beijing-Tianjin-Hebei region in China[J]. Front. Environ. Sci. Eng., 2019, 13(5): 70-.
[15] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed