Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (3) : 360-372    https://doi.org/10.1007/s11783-011-0353-z
RESEARCH ARTICLE
Single and joint effects of HHCB and cadmium on zebrafish (Danio rerio) in feculent water containing bedloads
Lei ZHANG1,2, Jing AN1, Qixing ZHOU1,3()
1. Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100039, China; 3. Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
 Download: PDF(714 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As an important type of emerging pollutants, ecological toxicity and risk of artificial musks are increasingly concerned. Thus, single and joint toxic effects of 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8- hexamethylcyclopenta-gamma-2-benzopyran (HHCB) as one of the most widely applied artificial musks and cadmium (Cd) as an toxic metal on zebrafish (Danio rerio) were investigated by the exposure of zebrafish to various concentrations of HHCB or/and Cd in feculent water containing bedloads. The results indicated that the joint effect of HHCB and Cd changed during different exposure times within 120 h. The index of the antioxidant enzyme system including superoxide dismutase (SOD) and peroxidase (POD), and malondialdehyde (MDA) were sensitive and induced in the zebrafish stressed by Cd, and content of soluble protein (SP) was sensitive to HHCB and could be used as a biomarker for HHCB. Joint effects on antioxidant enzymes depended more on the effect of single Cd in the first one or two days. However, in the rest exposure days, the effect of HHCB began to dominate in the joint effect during the exposure process.

Keywords 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran (HHCB)      cadmium (Cd)      antioxidant biomarker      feculent water containing bedloads     
Corresponding Author(s): ZHOU Qixing,Email:zhouqx@iae.ac.cn   
Issue Date: 01 June 2012
 Cite this article:   
Lei ZHANG,Jing AN,Qixing ZHOU. Single and joint effects of HHCB and cadmium on zebrafish (Danio rerio) in feculent water containing bedloads[J]. Front Envir Sci Eng, 2012, 6(3): 360-372.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0353-z
https://academic.hep.com.cn/fese/EN/Y2012/V6/I3/360
pollutantlevelin experiments of single toxicityin experiments of combined toxicityin experiment of oxidative stress biomarker
nominala)measurednominala)measurednominala)measured
HHCB11.470.45±0.031.250.38±0.030.140.042±0.005
22.150.66±0.051.610.49±0.030.280.083±0.007
33.160.97±0.082.080.64±0.050.560.170±0.010
44.641.46±0.052.680.83±0.051.110.370±0.018
56.812.19±0.133.451.07±0.072.220.710±0.033
610.003.05±0.164.451.39±0.06
714.684.48±0.12
Cd120.003.91±0.1316.683.25±0.110.950.24±0.04
223.675.21±0.2018.803.45±0.131.900.43±0.06
328.026.36±0.3121.194.03±0.183.790.83±0.12
433.177.99±0.3823.885.29±0.317.581.64±0.09
539.2610.58±0.2626.915.89±0.2315.163.05±0.15
646.4713.37±0.3330.337.28±0.33
755.0017.66±0.47
Tab.1  Tested concentrations of HHCB and Cd used for different types of experiments (mg·L)
kind of exposurepollutantexposure/hLC50 /(mg·L-1)a)95% confidence limitsa)regression equationa, b)correlation coefficienta)probit (LC50) a,c)toxicity unita)
single exposureHHCB1211.178.94-16.33y(probit) = 4.80+ 47.2×lg(C)0.8250.01.00
249.267.61-11.68y(probit) = -6.6+ 58.5×lg(C)0.8750.01.00
486.55.19-8.32y(probit) = 15.4+ 42.5×lg(C)0.9450.01.00
726.054.72-7.99y(probit) = 22.3+ 35.4×lg(C)0.9950.01.00
964.453.46-5.69y(probit) = 25.8+ 37.3×lg(C)1.0050.01.00
1203.632.66-4.77y(probit) = 32.8+ 30.7×lg(C)0.9750.01.00
Cd1247.2543.73-51.56y(probit) = -250.6+ 179.6×lg(C)0.8150.01.00
2439.5836.31-43.26y(probit) = -163.6+ 133.7×lg(C)0.9050.01.00
4834.1230.38-38.44y(probit) = -66.7+ 76.1×lg(C)0.9650.01.00
7231.8628.27-35.74y(probit) = -64.9+ 76.5×lg(C)0.9850.01.00
9630.3326.88-33.89y(probit) = -67.4+ 79.2×lg(C)0.9850.01.00
12030.3326.88-33.89y(probit) = -67.4+ 79.2×lg(C)0.9850.01.00
joint exposureHHCB123.843.33-4.99y(probit) = 5.0+ 76.9×lg(C)0.8928.10.56
243.172.55-4.66y(probit) = 31.1+ 37.8×lg(C)0.9722.70.45
482.62.21-3.11y(probit) = 38.5+ 13.6×lg(C)0.9633.10.66
722.392.06-2.78y(probit) = 26.1+ 57.6×lg(C)0.9635.70.71
962.171.84-2.53y(probit) = 24.1+ 68.5×lg(C)0.9938.40.77
1202.011.70-2.33y(probit) = 28.7+ 63.5×lg(C)0.9642.10.84
Cd1227.7826.11-30.50y(probit) = -187.1+ 163.3×lg(C)0.898.60.17
2425.8323.32-30.99y(probit) = -63.5+ 80.4×lg(C)0.9725.20.50
4823.2221.56-25.10y(probit) = -129.2+ 131.2×lg(C)0.9637.30.75
7222.6421.10-24.30y(probit) = -147.2+ 145.6×lg(C)0.9638.70.77
9621.6220.02-23.24y(probit) = -130.1+ 134.9×lg(C)0.9938.40.77
12020.8619.29-22.38y(probit) = -134.6+ 139.9×lg(C)0.9637.10.74
Tab.2  LC values and their 95% confidence intervals, regression equations and their correlation coefficients, toxicity probits and toxicity units derived from LC of HHCB and Cd in single and joint exposure at different exposure period
Fig.1  Isobole representations of joint effect between Cd and HHCB based on LC estimates, tested against zebrafish, with 95% confidence intervals
Fig.2  Single effects of Cd (a) and HHCB (b) and joint effects of these two pollutants (c) with different concentrations on SOD activity (U·mg protein) in zebrafish during different exposure time (data presented as means±SD, = 9). The legends show different exposure concentrations of the chemicals (mg·L). Different letters below histograms refer to the difference at significance level <0.05 (Tukey test) among exposure concentrations
Fig.3  Single effects of Cd (a) and HHCB (b) and joint effects of these two pollutants (c) with different concentrations on POD activity (U·mg protein) in zebrafish during different exposure time (data presented as means±SD, = 9). The legends show different exposure concentrations of the chemicals (mg·L). Different letters below histograms refer to the difference at significance level <0.05 (Tukey test) among exposure concentrations
Fig.4  Single effects of Cd (a) and HHCB (b) and joint effects of these two pollutants (c) with different concentrations of MDA (μmol·g FW) in zebrafish during different exposure time (data presented as means±SD, = 9). The legends show different exposure concentrations of the chemicals (mg·L). Different letters below histograms refer to the difference at significance level <0.05 (Tukey test) among the exposure concentrations
Fig.5  Single effects of Cd (a) and HHCB (b) and joint effects of these two pollutants (c) with different concentrations of SP (mg·g FW) in zebrafish during different exposure time (data presented as means±SD, = 9). The legends show different exposure concentration of the chemicals (mg·L). Different letters below histograms refer to the difference at significance level <0.05 (Tukey test) among exposure concentrations
1 Gnecco I, Berretta C, Lanza L G, La Barbera P. Storm water pollution in the urban environment of Genoa, Italy. Atmospheric Research , 2005, 77(1-4): 60-73
doi: 10.1016/j.atmosres.2004.10.017
2 Api A M, Ford R A. Evaluation of the oral subchronic toxicity of HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran) in the rat. Toxicology Letters , 1999, 111(1-2): 143-149
doi: 10.1016/S0378-4274(99)00175-7 pmid:10630709
3 Peck A M, Hornbuckle K C. Synthetic musk fragrances in urban and rural air of Iowa and the Great Lakes. Atmospheric Environment , 2006, 40(32): 6101-6111
doi: 10.1016/j.atmosenv.2006.05.058
4 Roosens L, Covaci A, Neels H. Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere , 2007, 69(10): 1540-1547
doi: 10.1016/j.chemosphere.2007.05.072 pmid:17631381
5 Duedahl-Olesen L, Cederberg T, Pedersen K H, H?jg?rd A. Synthetic musk fragrances in trout from Danish fish farms and human milk. Chemosphere , 2005, 61(3): 422-431
doi: 10.1016/j.chemosphere.2005.02.004 pmid:16182860
6 Kannan K, Reiner J L, Yun S H, Perrotta E E, Tao L, Johnson-Restrepo B, Rodan B D. Polycyclic musk compounds in higher trophic level aquatic organisms and humans from the United States. Chemosphere , 2005, 61(5): 693-700
doi: 10.1016/j.chemosphere.2005.03.041 pmid:16219504
7 Balk F, Ford R A. Environmental risk assessment for the polycyclic musks, AHTN and HHCB. II. Effect assessment and risk characterisation. Toxicology Letters , 1999, 111(1-2): 81-94
doi: 10.1016/S0378-4274(99)00170-8 pmid:10630704
8 Carlsson G, Orn S, Andersson P L, Soederstroem H, Norrgren L.The impact of musk ketone on reproduction in zebrafish (Danio rerio). Marine Environmental Research , 2000, 50(1-5): 237-241
9 Yang J J, Metcalfe C D. Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids. Science of the Total Environment , 2006, 363(1-3): 149-165
doi: 10.1016/j.scitotenv.2005.06.022 pmid:16081141
10 Sun Y, Zhou Q, Wang L, Liu W. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials , 2009, 161(2-3): 808-814
doi: 10.1016/j.jhazmat.2008.04.030 pmid:18513866
11 Zhou Q X, Huang G H. Environmental Biogeochemistry and Global Environmental Changes. Beijing: Science Press, 2001
12 Gilbert J K, Clausen J C. Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut. Water Research , 2006, 40(4): 826-832
doi: 10.1016/j.watres.2005.12.006 pmid:16427680
13 Rosenkrantz R T, Pollino C A, Nugegoda D, Baun A. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella. Environmental Pollution , 2008, 156(3): 922-927
doi: 10.1016/j.envpol.2008.05.013 pmid:18620788
14 Christensen A M, Nakajima F, Baun A. Toxicity of water and sediment in a small urban river (Store Vejle?, Denmark). Environmental Pollution , 2006, 144(2): 621-625
doi: 10.1016/j.envpol.2006.01.032 pmid:16530900
15 Snodgrass J W, Casey R E, Joseph D, Simon J A. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: Variation in sensitivity among species. Environmental Pollution , 2008, 154(2): 291-297
doi: 10.1016/j.envpol.2007.10.003 pmid:18023947
16 Basha P S, Rani A U. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicology and Environmental Safety , 2003, 56(2): 218-221
doi: 10.1016/S0147-6513(03)00028-9 pmid:12927552
17 Sun F H, Zhou Q X. Oxidative stress biomarkers of the polychaete Nereis diversicolor exposed to cadmium and petroleum hydrocarbons. Ecotoxicology and Environmental Safety , 2008, 70(1): 106-114
doi: 10.1016/j.ecoenv.2007.04.014 pmid:17673290
18 Chater S, Douki T, Garrel C, Favier A, Sakly M, Abdelmelek H. Cadmium-induced oxidative stress and DNA damage in kidney of pregnant female rats. Comptes Rendus Biologies , 2008, 331(6): 426-432
doi: 10.1016/j.crvi.2008.03.009 pmid:18510995
19 Wang M E, Zhou Q X. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels. Environmental Pollution , 2006, 144(2): 572-580
doi: 10.1016/j.envpol.2006.01.024 pmid:16530309
20 Khatuna S, Ali M B, Hahna E J, Paeka K Y. Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany , 2008, 64(3): 279-285
doi: 10.1016/j.envexpbot.2008.02.004
21 Carney Almroth B, Sturve J, F?rlin L. Oxidative damage in rainbow trout caged in a polluted river. Marine Environmental Research , 2008, 66(1): 90-91
doi: 10.1016/j.marenvres.2008.02.032 pmid:18384872
22 Balk F, Ford R A. Environmental risk assessment for the polycyclic musks AHTN and HHCB in the EU. I. Fate and exposure assessment. Toxicology Letters , 1999, 111(1-2): 57-79
doi: 10.1016/S0378-4274(99)00169-1 pmid:10630703
23 Gooding M P, Newton T J, Bartsch M R, Hornbuckle K C. Toxicity of synthetic musks to early life stages of the freshwater mussel Lampsilis cardium. Archives of Environmental Contamination and Toxicology , 2006, 51(4): 549-558
doi: 10.1007/s00244-005-0223-4 pmid:16944041
24 Breitholtz M, Wollenberger L, Dinan L. Effects of four synthetic musks on the life cycle of the harpacticoid copepod Nitocra spinipes. Aquatic Toxicology (Amsterdam, Netherlands) , 2003, 63(2): 103-118
doi: 10.1016/S0166-445X(02)00159-5 pmid:12657486
25 An J, Zhou Q X, Sun Y, Xu Z. Ecotoxicological effects of typical personal care products on seed germination and seedling development of wheat (Triticum aestivum L.). Chemosphere , 2009, 76(10): 1428-1434
doi: 10.1016/j.chemosphere.2009.06.004 pmid:19631961
26 Wu Y X. von T A. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environmental Pollution , 2002, 116(1): 37-47
doi: 10.1016/S0269-7491(01)00174-9 pmid:11808554
27 Hegedüs A, Erdei S, Horváth G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science , 2001, 160(6): 1085-1093
doi: 10.1016/S0168-9452(01)00330-2 pmid:11337065
28 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 1976, 72(1-2): 248-254
doi: 10.1016/0003-2697(76)90527-3 pmid:942051
29 Finney D J. Statistical Method in Biological Assay. 3rd ed . London: Charles Griffin &amp; Co. Ltd, 1978
30 Sprague J B. Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Research , 1970, 4(1): 3-32
doi: 10.1016/0043-1354(70)90018-7
31 Boillot C, Perrodin Y. Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the Toxicity Index model and isoblogram representation. Ecotoxicology and Environmental Safety , 2008, 71(1): 252-259
doi: 10.1016/j.ecoenv.2007.08.010 pmid:17945345
32 Smital T, Luckenbach T, Sauerborn R, Hamdoun A M, Vega R L, Epel D. Emerging contaminants—pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutation Research , 2004, 552(1-2): 101-117
doi: 10.1016/j.mrfmmm.2004.06.006 pmid:15288544
33 Celik I, Suzek H. Effects of subacute treatment of ethylene glycol on serum marker enzymes and erythrocyte and tissue antioxidant defense systems and lipid peroxidation in rats. Chemico-Biological Interactions , 2007, 167(2): 145-152
doi: 10.1016/j.cbi.2007.02.007 pmid:17382310
34 Ruiz-Lozano R, Azcon R, Palma J M. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytologist , 1996, 134(2): 327-333
doi: 10.1111/j.1469-8137.1996.tb04637.x
35 Vitória A P, Lea P J, Azevedo R A. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry , 2001, 57(5): 701-710
doi: 10.1016/S0031-9422(01)00130-3 pmid:11397437
36 Foyer C, Lelandais M, Kunert K. Photooxidative stress in plants. Physiologia Plantarum , 1994, 92(4): 696-717
doi: 10.1111/j.1399-3054.1994.tb03042.x
37 Kupper T, Berset J D, Etter-Holzer R, Furrer R, Tarradellas J. Concentrations and specific loads of polycyclic musks in sewage sludge originating from a monitoring network in Switzerland. Chemosphere , 2004, 54(8): 1111-1120
doi: 10.1016/j.chemosphere.2003.09.023 pmid:14664839
38 Kallenborn R, Gatermann R, Nygard T, Knutzen J, Schlabach M. Synthetic musks in Norwegian marinefish samples collected in the vicinity of densely populated areas. Fresenius Environmental Bulletin , 2001, 10(11): 832-842
39 Bhavan P, Geraldine P. Biochemical stress responses in tissues of the prawn Macrobarchium malcomsonii on exposure to endosulfan. Pesticide Biochemistry and Physiology , 2001, 70(1): 27-41
doi: 10.1006/pest.2001.2531
40 Mosleh Y Y, Paris-Palacios S, Arnoult F, Couderchet M, Biagianti-Risbourg S, Vernet G. Metallothionein induction in aquatic oligochaete tubifex tubifex exposed to herbicide isoproturon. Environmental Toxicology , 2004, 19(1): 88-93
doi: 10.1002/tox.10153 pmid:14758596
[1] Jianguo LIU,Wen ZHANG,Peng QU,Mingxin WANG. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 262-269.
[2] Meng XUE, Yihui ZHOU, Zhongyi YANG, Biyun LIN, Jiangang YUAN, Shanshan WU. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.)[J]. Front Envir Sci Eng, 2014, 8(2): 226-238.
[3] Yihui ZHOU, Meng XUE, Zhongyi YANG, Yulian GONG, Jiangang YUAN, Chunyan ZHOU, Baifei HUANG. High cadmium pollution risk on vegetable amaranth and a selection for pollution-safe cultivars to lower the risk[J]. Front Envir Sci Eng, 2013, 7(2): 219-230.
[4] Kun ZHANG, Jianbing WANG, Zhongyi YANG, Guorong XIN, Jiangang YUAN, Junliang XIN, Charlie HUANG. Genotype variations in accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd and Pb accumulative cultivars[J]. Front Envir Sci Eng, 2013, 7(1): 85-96.
[5] Quanlin DAI, Baifei HUANG, Zhongyi YANG, Jiangang YUAN, Junzhi YANG. Identification of cadmium-induced genes in maize seedlings by suppression subtractive hybridization[J]. Front Envir Sci Eng Chin, 2010, 4(4): 449-458.
[6] Guixiang ZHANG, Xitao LIU, Ke SUN, Ye ZHAO, Chunye LIN. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils[J]. Front Envir Sci Eng Chin, 2010, 4(4): 421-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed