Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (3) : 342-347    https://doi.org/10.1007/s11783-011-0358-7
RESEARCH ARTICLE
Hygroscopicity of ambient submicron particles in urban Hangzhou, China
Jiachen ZHANG1, Lin WANG1,2(), Jianmin CHEN1,2(), Shengmao FENG3, Jiandong SHEN3, Li JIAO3
1. Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; 2. Research Institute for the Changing Global Environment, Fudan University, Shanghai 200433, China; 3. Central Station of Environmental Monitoring, Hangzhou Environmental Protection Bureau, Hangzhou 310012, China
 Download: PDF(177 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, hygroscopicity of size-segregated ambient submicron particles in urban Hangzhou was studied from 28th December 2009 to 18th January 2010, using a hygroscopicity-tandem differential mobility analyzer (H-TDMA). The submicron particles in Hangzhou showed a minor hygroscopic growth at 73% relative humidity (RH), and then grew significantly between 77% and 82% RH. Monomodal distribution accounted for 90% for 30 nm particles, 17% for 50 nm particles, and less than 7% for particles larger than 50 nm at 82% RH. Deconvolution of the bimodal distribution indicated a less hygroscopic group and a more hygroscopic group, with the fraction of the more hygroscopic group increasing with the initial dry particle size and then remaining almost constant for accumulation mode particles. Our results imply that submicron particles in urban Hangzhou were almost entirely externally mixed, and the hygroscopic properties of ambient particles in urban Hangzhou were mainly a function of their size and chemical composition.

Keywords hygroscopicity      hygroscopic tandem differential mobility analyzer (H-TDMA)      submicron ambient particles      Hangzhou     
Corresponding Author(s): WANG Lin,Email:lin_wang@fudan.edu.cn; CHEN Jianmin,Email:jmchen@fudan.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Jiachen ZHANG,Lin WANG,Jianmin CHEN, et al. Hygroscopicity of ambient submicron particles in urban Hangzhou, China[J]. Front Envir Sci Eng Chin, 2011, 5(3): 342-347.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0358-7
https://academic.hep.com.cn/fese/EN/Y2011/V5/I3/342
Fig.1  Schematic diagram of the H-TDMA system
Fig.2  RH calibration with 180 nm AS particles at 82% RH. Grey line with markers: measurement distribution function (MDF) with measurement error, left scale; black line and markers: reconstituted measurement distribution function (R-MDF), left scale; the other black line: growth factor probability density function (GF-PDF), right scale
RH/%30 nm50 nm80 nm100 nm130 nm150 nm180 nm200 nm
73GF_avg1.111.111.121.141.141.141.141.14
GF_max1.151.141.161.151.161.171.201.19
GF_min1.071.081.081.121.111.131.121.12
No.1215141214141413
77GF_avg1.111.131.171.171.191.191.191.18
GF_max1.161.171.221.201.221.251.251.23
GF_min1.071.081.131.131.151.171.151.13
No.1091111117109
82GF_avg1.171.211.251.261.281.271.281.28
GF_max1.241.311.361.371.401.441.421.38
GF_min1.071.101.131.141.161.141.171.17
No.482472479475486493494476
88GF_avg1.231.301.311.411.411.341.391.39
GF_max1.281.361.511.531.501.461.481.49
GF_min1.171.271.221.341.351.281.271.33
No.436361269
Tab.1  Size segregated GFs for ambient particles at varied RH
Fig.3  Campaign-averaged GF-PDF for monomodal (a) and bimodal (b) distribution at 82% RH
Fig.4  Campaign-averaged mode distribution of GFs at 82% RH. Grey column: monomdol distribution percentage of all data, left axis; squares: GFs of monomodal distribution, right axis; stars: GFs of bimodal distribution, right axis
Fig.5  Campaign-averaged GFs and number fractions of the MH and LH groups for the bimodal distribution at 82% RH. Squares: GFs of the LH group, left axis; circles: GFs of the MH group, left axis; stars: number fraction of the MH group, right axis
1 Zhang L. Intercontinental transport of air pollution. Frontiers of Environmental Science & Engineering in China , 2010, 4(1): 20–29
doi: 10.1021/jp076169h pmid:18232670
2 Tursic J, Berner A, Podkrajsek B, Grgic I. Influence of ammonia on sulfate formation under haze conditions. Atmospheric Environment , 2004, 38(18): 2789–2795
doi: 10.1016/j.atmosenv.2004.02.036
3 Zieger P, Fierz-Schmidhauser R, Gysel M, Str?m J, Henne S, Yttri K E, Baltensperger U, Weingartner E. Effects of relative humidity on aerosol light scattering in the Arctic. Atmospheric Chemistry and Physics , 2010, 10(8): 3875–3890
doi: 10.5194/acp-10-3875-2010
4 Petters M D, Kreidenweis S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics , 2007, 7(8): 1961–1971
doi: 10.5194/acp-7-1961-2007
5 Liu B Y H, Pui D, Whitby K, Kittelson D, Kousaka Y, McKenzie R. Aerosol mobility chromatograph–new detector for sulfuric-acid aerosols. Atmospheric Environment , 1978, 12(1–3): 99–104
doi: 10.1016/0004-6981(78)90192-0
6 Swietlicki E, Hansson H C, Hameri K, Svenningsson B, Massling A, McFiggans G, McMurry P H, Petaja T, Tunved P, Gysel M, Topping D, Weingartner E, Baltensperger U, Rissler J, Wiedensohler A, Kulmala M. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments–a review. Tellus. Series B, Chemical and Physical Meteorology , 2008, 60(3): 432–469
doi: 10.1111/j.1600-0889.2008.00350.x
7 Massling A, Stock M, Wehner B, Wu Z J, Hu M, Brüggemann E, Gnauk T, Herrmann H, Wiedensohler A. Size segregated water uptake of the urban submicrometer aerosol in Beijing. Atmospheric Environment , 2009, 43(8): 1578–1589
doi: 10.1016/j.atmosenv.2008.06.003
8 Meier J, Wehner B, Massling A, Birmili W, Nowak A, Gnauk T, Brüggemann E, Herrmann H, Min H, Wiedensohler A. Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: a comparison of three experimental methods. Atmospheric Chemistry and Physics , 2009, 9(18): 6865–6880
doi: 10.5194/acp-9-6865-2009
9 Eichler H, Cheng Y F, Birmili W, Nowak A, Wiedensohler A, Brüggemann E, Gnauk T, Herrmann H, Althausen D, Ansmann A. Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in south-eastern China. Atmospheric Environment , 2008, 42(25): 6321–6334
doi: 10.1016/j.atmosenv.2008.05.007
10 Ye X N, Ma Z, Hu D W, Yang X, Chen J M. Size-resolved hygroscopicity of submicrometer urban aerosols in Shanghai during wintertime. Atmospheric Research , 2011, 99(2): 353–364
doi: 10.1016/j.atmosres.2010.11.008
11 Fu Q Y, Zhuang G, Wang J, Xu C, Huang K, Li J, Hou B, Lu T, Streets D G. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment , 2008, 42(9): 2023–2036
doi: 10.1016/j.atmosenv.2007.12.002
12 Liu X G, Cheng Y, Zhang Y, Jung J, Sugimoto N, Chang S Y, Kim Y J, Fan S, Zeng L. Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign. Atmospheric Environment , 2008, 42(7): 1525–1536
doi: 10.1016/j.atmosenv.2007.10.077
13 Ye X N, Chen T Y, Hu D W, Yang X, Chen J M, Zhang R Y, Khakuziv A F, Wang L. A multifunctional HTDMA system with a robust temperature control. Advances in Atmospheric Sciences , 2009, 26(6): 1235–1240
doi: 10.1007/s00376-009-8134-3
14 Gysel M, McFiggans G B, Coe H. Inversion of tandem differential mobility analyser (TDMA) measurements. Journal of Aerosol Science , 2009, 40(2): 134–151
doi: 10.1016/j.jaerosci.2008.07.013
15 Cao J J, Shen Z, Chow J C, Qi G, Watson J G. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology , 2009, 7(3): 161–168
doi: 10.1016/j.partic.2009.01.009
16 Wexler A S, Seinfeld J H. Second-generation inorganic aerosol model. Atmospheric Environment. Part A, General Topics , 1991, 25(12): 2731–2748
doi: 10.1016/0960-1686(91)90203-J
17 Gao J, Wang T, Zhou X, Wu W, Wang W X. Measurement of aerosol number size distributions in the Yangtze River Delta in China: formation and growth of particles under polluted conditions. Atmospheric Environment , 2009, 43(4): 829–836
doi: 10.1016/j.atmosenv.2008.10.046
18 Asmi E, Frey A, Virkkula A, Ehn M, Manninen H E, Timonen H, Tolonen-Kivim?ki O, Aurela M, Hillamo R, Kulmala M. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmospheric Chemistry and Physics , 2010, 10(9): 4253–4271
doi: 10.5194/acp-10-4253-2010
19 Khalizov A F, Zhang R Y, Zhang D, Xue H X, Pagels J, McMurry P H. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor. The Journal of Geophysical Research-Atmospheres , 2009, 114, D05208
doi: 10.1029/2008JD010595.
20 Swietlicki E, Zhou J, Berg O H, Martinsson B G, Frank G, Cederfelt S I, Dusek U, Berner A, Birmili W, Wiedensohler A, Yuskiewicz B, Bower K N. A closure study of sub-micrometer aerosol particle hygroscopic behaviour. Atmospheric Research , 1999, 50(3–4): 205–240
doi: 10.1016/S0169-8095(98)00105-7
21 Huang X F, Yu J Z, He L Y, Hu M. Size distribution characteristics of elemental carbon emitted from Chinese vehicles: results of a tunnel study and atmospheric implications. Environmental Science & Technology , 2006, 40(17): 5355–5360
doi: 10.1021/es0607281 pmid:16999110
22 Massling A, Stock M, Wiedensohler A. Diurnal, weekly, and seasonal variation of hygroscopic properties of submicrometer urban aerosol particles. Atmospheric Environment , 2005, 39(21): 3911–3922
doi: 10.1016/j.atmosenv.2005.03.020
23 Gasparini R, Li R J, Collins D R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol. Atmospheric Environment , 2004, 38(20): 3285–3303
doi: 10.1016/j.atmosenv.2004.03.019
24 Chen J P. Theory of deliquescence and modified Kohler curves. Journal of the Atmospheric Sciences , 1994, 51(23): 3505–3516
doi: 10.1175/1520-0469(1994)051<3505:TODAMK>2.0.CO;2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed