Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (3) : 330-335    https://doi.org/10.1007/s11783-011-0366-7
RESEARCH ARTICLE
Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass
Dengqiang FU1, Ying TENG1, Yuanyuan SHEN1, Mingming SUN1, Chen TU1, Yongming LUO1(), Zhengao LI1, Peter CHRISTIE2
1. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2. Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK
 Download: PDF(129 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dissipation and plant uptake of polycyclic aromatic hydrocarbons (PAHs) in contaminated agricultural soil planted with perennial ryegrass were investigated in a field experiment. After two seasons of grass cultivation the mean concentration of 12 PAHs in soil decreased by 23.4% compared with the initial soil. The 3-, 4-, 5-, and 6-ring PAHs were dissipated by 30.9%, 25.5%, 21.2%, and 16.3% from the soil, respectively. Ryegrass shoots accumulated about 280 μg·kg-1, shoot dry matter biomass reached 2.48 × 104 kg·ha-1, and plant uptake accounted for about 0.99% of the decrease in PAHs in the soil. Significantly higher soil enzyme activities and microbial community functional diversity were observed in planted soil than that in the unplanted control. The results suggest that planting ryegrass may promote the dissipation of PAHs in long-term contaminated agricultural soil, and plant-promoted microbial degradation may be a main mechanism of phytoremediation.

Keywords perennial ryegrass      polycyclic aromatic hydrocarbon bioremediation      plant uptake      soil microbial activity     
Corresponding Author(s): LUO Yongming,Email:ymluo@issas.ac.cn   
Issue Date: 01 June 2012
 Cite this article:   
Dengqiang FU,Ying TENG,Yuanyuan SHEN, et al. Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass[J]. Front Envir Sci Eng, 2012, 6(3): 330-335.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0366-7
https://academic.hep.com.cn/fese/EN/Y2012/V6/I3/330
PAH (ring number)PAH concentration in soil/(μg·kg-1)
initialafter 7 monthsafter 20 months
CKPRCKPRCKPR
phenanthrene (3)139±23139±39132±30130±19128±896±15
anthracene (3)15±415±115±213±215±211±3
fluoranthene (4)222±28214±41206±29169±6233±24174±9
pyrene (4)184±26193±18175±14143±18175±18139±7
Benzo[a]anthracene (4)97±14103±14109±478±10117±1779±15
chrysene (4)139±20138±23132±11115±23130±790±12
Benzo[b]fluoranthene (5)149±14149±16142±31106±12147±8127±18
Benzo[k]fluoranthene (5)60±660±855±1244±361±1744±3
Benzo[a]pyrene (5)115±33108±8118±2686±13111±3578±7
Dibenzo[a,h]anthracene (5)26±225±327±1522±225±720±3
Benzo[g,h,i]perylene (6)201±16185±28219±87173±23190±43154±13
Indeno[1,2,3-c,d]pyrene (6)67±960±1161±253±1864±350±8
total1413±1541388±1711391±1921130±421396±891063±93
Tab.1  Concentrations of PAHs in unplanted and vegetated soil over time
growing seasonshoot biomass/ (kg·ha-1)total shoot PAH concentration/(μg·kg-1)shoot total uptake/ (g·ha-1)total PAH removal from surface soil/(g·ha-1)
1 (2009)1.14±0.14 × 104282±333.21565
2 (2010)1.34±0.10 × 104284±193.80146
total2.48 × 1042837.01711
Tab.2  Plant biomass and total PAH accumulation in ryegrass shoots
Fig.1  Mean concentrations of PAHs with different ring numbers in ryegrass shoots in both growing seasons
treatmentDHA activity (μg TPF·g -1 dry soil)POD activity (mg pyrogallic acid·g-1 dry soil·h-1)
CK41±4 b5.0±0.6 a
PR77±9 a5.5±0.5 a
Tab.3  Activities of two soil oxidoreductases in planted and unplanted soil
Fig.2  Variation in average well–color development (AWCD) for soil samples from both treatments after 20 months of ryegrass growth. CK: unplanted plots (◇); PR: plots planted with perennial ryegrass (?)
1 W?lz J, Schulze T, Lübcke-von Varel U, Fleig M, Reifferscheid G, Brack W, Kühlers D, Braunbeck T, Hollert H. Investigation on soil contamination at recently inundated and non-inundated sites. Journal of Soils and Sediments , 2011, 11(1): 82-92
doi: 10.1007/s11368-010-0267-6
2 Patrolecco L, Ademollo N, Capri S, Pagnotta R, Polesello S. Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere , 2010, 81(11): 1386-1392
doi: 10.1016/j.chemosphere.2010.09.027 pmid:20932548
3 Flowers L, Rieth S H, Cogliano V J, Foureman G L, Hertzberg R, Hofmann E L, Murphy D L, Nesnow S, Schoeny R S. Health assessment of polycyclic aromatic hydrocarbon mixtures: Current practices and future directions. Polycyclic Aromatic Compounds , 2002, 22(3): 811-821
doi: 10.1080/10406630213574
4 Wild S R, Jones K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget. Environmental pollution , 1995, 88(1): 91-108
doi: 10.1016/0269-7491(95)91052-M pmid:15091573
5 Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma , 2007, 141(3-4): 157-166
doi: 10.1016/j.geoderma.2007.07.007
6 Ma B, He Y, Chen H H, Xu J M, Rengel Z. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Environmental pollution , 2010, 158(3): 855-861
doi: 10.1016/j.envpol.2009.09.024 pmid:19854547
7 Parrish Z D, Banks M K, Schwab A P. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environmental pollution , 2005, 137(2): 187-197
doi: 10.1016/j.envpol.2005.02.012 pmid:15963365
8 Liste H H, Alexander M. Plant-promoted pyrene degradation in soil. Chemosphere , 2000, 40(1): 7-10
doi: 10.1016/S0045-6535(99)00216-7 pmid:10665438
9 Kolb M, Harms H. Metabolism of fluoranthene in different plant cell cultures and intact plants.Environmental Toxicology and Chemistry , 2000, 19(5): 1304-1310
doi: 10.1002/etc.5620190512
10 Kucerová P, in der CWiesche M, Wolter T, Macek F, Zadrazil M, MackováM. The ability of different plant species to remove polycyclic aromatic hydrocarbons and polychlorinated biphenyls from incubation media. Biotechnology Letters , 2001, 23(16): 1355-1359
doi: 10.1023/A:1010502023311
11 Wei S Q, Pan S W. Phytoremediation for soils contaminated by phenanthrene and pyrene with multiple plant species. Journal of Soils and Sediments , 2010, 10(5): 886-894
doi: 10.1007/s11368-010-0216-4
12 Lu M, Zhang Z Z, Sun S S, Wei X F, Wang Q F, Su Y M. The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum. Water, Air, and Soil Pollution , 2010, 209(1-4): 181-189
doi: 10.1007/s11270-009-0190-x
13 Cofield N, Schwab A P, Banks M K. Phytoremediation of polycyclic aromatic hydrocarbons in soil: part I. Dissipation of target contaminants. International Journal of Phytoremediation , 2007, 9(5): 355-370
doi: 10.1080/15226510701603858 pmid:18246723
14 Binet P, Portal J M, Leyval C. Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biology and Biochemistry , 2000, 32(14): 2011-2017
doi: 10.1016/S0038-0717(00)00100-0
15 Joner E J, Leyval C. Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza , 2001, 10(4): 155-159
doi: 10.1007/s005720000071
16 Kirk J L, Klironomos J N, Lee H, Trevors J T. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental pollution , 2005, 133(3): 455-465
doi: 10.1016/j.envpol.2004.06.002 pmid:15519721
17 Rezek J, in der Wiesche C, Macková M, Zadrazil F, Macek T. The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere , 2008, 70(9): 1603-1608
doi: 10.1016/j.chemosphere.2007.08.003 pmid:17888488
18 Canadian Council of Ministers of the Environment. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Tables. Updated 7.0. Winnipeg, CCME, 2007
19 Qian W, Ni J Z, Luo Y M, Li X H, Zou D X. Determination of polycyclic aromatic hydrocarbons in soil by high performance liquid chromatography with fluorescence detection. Chinese journal of chromatography , 2007, 25(2): 221-225 (in Chinese)
pmid:17580691
20 Singh J, Singh D K . Dehydrogenase and phosphomonoesterase activities in groundnut (Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments. Chemosphere , 2005, 60: 32-42
21 Teng Y, Luo Y M, Gao J, Li Z G. Combined remediation effects of arbuscular mycorrhizal fungi-legumes-rhizobium symbiosis on PCBs contaminated soils. Environmental Science , 2008, 29:2925-2930 (in Chinese)
22 Zak J C, Willig M R, Moorhead D L, Wildman H G. Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry , 1994, 26:1101-1108
23 Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack F M G, Lust N. Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environmental pollution , 2003, 126(2): 275-282
doi: 10.1016/S0269-7491(03)00189-1 pmid:12927498
24 Xu S Y, Chen Y X, Wu W X, Wang K X, Lin Q, Liang X Q. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Science of the total environment , 2006, 363(1-3): 206-215
doi: 10.1016/j.scitotenv.2005.05.030 pmid:15985280
25 Cheema S A, Imran Khan M, Shen C F, Tang X J, Farooq M, Chen L, Zhang C K, Chen Y X. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials , 2010, 177(1-3): 384-389
doi: 10.1016/j.jhazmat.2009.12.044 pmid:20079966
26 Choi W J, Chang S X. Technical note: nitrogen fertilization effects on the degradation of aged diesel oil in composted drilling wastes. International Journal of Phytoremediation , 2009, 11(5): 441-450
doi: 10.1080/15226510802655971 pmid:19810347
27 Smith K E, Schwab A P, Banks M K. Dissipation of PAHs in saturated, dredged sediments: a field trial. Chemosphere , 2008, 72(10): 1614-1619
doi: 10.1016/j.chemosphere.2008.03.020 pmid:18547603
28 Zhang J, Yin R, Lin X G, Liu W W, Chen R R, Li X Z. Interactive effect of biosurfactant and microorganism to enhance phytoremediation for removal of aged polycyclic aromatic hydrocarbons from contaminated soils. Journal of Health Science , 2010, 56(3): 257-266
doi: 10.1248/jhs.56.257
29 Sun T R, Cang L, Wang Q Y, Zhou D M, Cheng J M, Xu H. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. Journal of Hazardous Materials , 2010, 176(1-3): 919-925
doi: 10.1016/j.jhazmat.2009.11.124 pmid:20005625
30 Xu S Y, Chen Y X, Lin K F, Chen X C, Lin Q, Li F, Wang Z W. Removal of pyrene from contaminated soils by white clover. Pedosphere , 2009, 19(2): 265-272
doi: 10.1016/S1002-0160(09)60117-X
31 Cheng K Y, Lai K M, Wong J W C. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere , 2008, 73(5): 791-797
doi: 10.1016/j.chemosphere.2008.06.005 pmid:18672265
32 Johnson D L, Anderson D R, McGrath S P. Soil microbial response during the phytoremediation of PAH contaminated soil. Soil Biology and Biochemistry , 2005, 37(12): 2334-2336
doi: 10.1016/j.soilbio.2005.04.001
[1] Haifeng ZHANG, Lu SU, Xiangyu LI, Jiane ZUO, Guangli LIU, Yujue WANG. Evaluation of soil microbial toxicity of waste foundry sand for soil-related reuse[J]. Front Envir Sci Eng, 2014, 8(1): 89-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed