Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (5) : 753-760    https://doi.org/10.1007/s11783-011-0368-5
RESEARCH ARTICLE
Enhancement of sludge gravitational thickening with weak ultrasound
Panyue ZHANG1, Tian WAN2, Guangming ZHANG2()
1. School of Environment Science and Engineering, Hunan University, Changsha 410082, China; 2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gravitational thickening is the prevailing method to reduce sludge volume but the process is slow and usually requires addition of polyelectrolyte(s). This paper investigated the potential benefits of sonication on enhancing the sludge gravitational thickening with very low energy dose, so called “weak ultrasound”. Results showed that weak sonication significantly changed the sludge settlability and the main mechanism was release of the loosely bounded extracellular polymeric substances. The changes in sludge behaviors by sonication were strongly influenced by power density and sonication duration. Lower sound frequency was slightly better than higher frequency. Weak sonication (<680 kJ·kg-1 DS) improved the sludge gravitational thickening while high ultrasonic energy deteriorated the process. Considering both the sludge thickening efficiency and energy consumption, the optimum conditions were 0.15 W·mL-1, 7 s, and 25 kHz. Under such conditions, the energy dose was only 155 kJ·kg-1 DS, much lower than literature reports, and the sludge settling time was shortened from 24 h to 12?h. Weak sonication could substitute expensive polyelectrolyte coagulant for sludge thickening. Combination of weak sonication and polyelectrolyte could further reduce the settling time to 6 h. The final water content of the thickened sludge was not changed after sonication or polyelectrolyte addition.

Keywords activated sludge      sonication      settlability      dry weight      extracellular polymeric substances      polyelectrolyte     
Corresponding Author(s): ZHANG Guangming,Email:gmgwen@gmail.com   
Issue Date: 01 October 2012
 Cite this article:   
Panyue ZHANG,Tian WAN,Guangming ZHANG. Enhancement of sludge gravitational thickening with weak ultrasound[J]. Front Envir Sci Eng, 2012, 6(5): 753-760.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0368-5
https://academic.hep.com.cn/fese/EN/Y2012/V6/I5/753
water contentDSpHsoluble chemical oxygen demand (SCOD)organic content
99.3%6750 mg·L-16.36215 mg·L-181.2%
Tab.1  Sludge characteristics
Fig.1  Sludge gravitational thickening: (a) sludge dry weight; (b) supernatant organic content
Fig.2  Impact of PAM addition on sludge gravitational thickening
Fig.3  Impact of sonication power density on sludge gravitational thickening, 15 s, 25 kHz
Fig.4  Impact of sonication duration on sludge gravitational thickening, 0.15 W·mL, 25 kHz
Fig.5  Microphotographs of floc structure, 0.15 W·mL, 25 kHz: (a) floc structure in untreated sludge; (b) floc structure changes during sonication (400 times magnification)
Fig.6  Sludge SCOD increase during sonication: (a) 15 s, 25 kHz; (b) 0.15 W·mL, 25 kHz
Fig.7  Concentration changes of Ca and Mg in supernatant during sonication, 0.15 W·mL, 25 kHz
Fig.8  Combinations of sonication and PAM for sludge thickening, 0.15 W·mL, 7 s, 25 kHz
1 Chen Y G, Yang H Z, Gu G W. Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Research , 2001, 35(11): 2615–2620
doi: 10.1016/S0043-1354(00)00565-0
2 Yin X, Han P F, Lu X P, Wang Y R. A review on the dewaterability of bio-sludge and ultrasound pretreatment. Ultrasonics Sonochemistry , 2004, 11(6): 337–348
3 Feng X, Deng J C, Lei H Y, Bai T, Fan Q J, Li Z X. Dewaterability of waste activated sludge with ultrasound conditioning. Bioresource Technology , 2009, 100(3): 1074–1081
doi: 10.1016/j.biortech.2008.07.055
4 Yasuhiko W, Kazuhiro T. Innovative sludge handing through pelletization/thickening. Water Research , 1999, 33(15): 3245–3252
5 SWSDE. Guide of Water and Wastewater Treatment Design. 2nd ed. Beijing: Chinese Arch Eng Publishing Company, 2001
6 Suslick K S. Sonochemistry. Science , 1990, 247(4949): 1439–1445
doi: 10.1126/science.247.4949.1439
7 Chu C P, Chang B V, Liao G S, Jean D S, Lee D J. Observations on changes in ultrasonically treated waste-activated sludge. Water Research , 2001, 35(4): 1038–1046
doi: 10.1016/S0043-1354(00)00338-9
8 Gonze E, Pillot S, Valette E, Gonthier Y, Bernis A. Ultrasonic treatment of an aerobic activated sludge in a batch reactor. Chemical Engineering and Processing , 2003, 42(12): 965–975
doi: 10.1016/S0255-2701(03)00003-5
9 Bougrier C, Albasi C, Delgenes J P, Carrere H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chemical Engineering and Processing , 2006, 45(8): 711–718
doi: 10.1016/j.cep.2006.02.005
10 Tiehm A, Nickel K, Zellhorn M, Neis U. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Research , 2001, 35(8): 2003–2009
doi: 10.1016/S0043-1354(00)00468-1
11 Nickel K, Neis U. Ultrasonic disintegration of biosolids for improved biodegradation. Ultrasonics Sonochemistry , 2007, 14(4): 450–455
doi: 10.1016/j.ultsonch.2006.10.012
12 Yin X, Lu X P, Han P F, Wang Y R. Ultrasonic treatment on activated sewage sludge from petro-plant for reduction. Ultrasonics , 2006, 44(supplement): E397–E399
doi: 10.1016/j.ultras.2006.05.187
13 Na S, Kim Y U, Khim J. Physiochemical properties of digested sewage sludge with ultrasonic treatment. Ultrasonics Sonochemistry , 2007, 14(3): 281–285
doi: 10.1016/j.ultsonch.2006.06.004
14 Bien J, Wolny L. Changes of some sewage sludge parameters prepared with an ultrasonic field. Water Science and Technology , 1997, 36(11): 101–106
doi: 10.1016/S0273-1223(97)00675-6
15 Kim Y U,Kim B I.Effect of ultrasound on dewaterability of sewage sludge. Japanese Journal of Applied Physiscs . Part 1, 2003, 42: 5898–5899
16 Riera-Franco de Sarabia E, Gallego-Juarez J A, Rodriguez-Corral G, Elvira-Segura L, Gonzalez-Gomez I. Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics , 2000, 38(1-8): 642–646
doi: 10.1016/S0041-624X(99)00129-8
18 Wang F, Wang Y, Ji M.Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. Journal of Hazardous Materials , 2005, 123(1–3): 145–150
doi: 10.1016/j.jhazmat.2005.03.033
19 Dewil R, Baeyens J, Goutvrind R. The use of ultrasonics in the treatment of waste activated sludge. Chinese Journal of Chemical Engineering , 2006, 14(1): 105–113
doi: 10.1016/S1004-9541(06)60045-1
20 Wang F. Influence of ultrasonic disintegration on sludge characteristics and zero waste activated sludge production process. Dissertation for the Doctoral Degree . Tianjin: Tianjin University, 2006 (in Chinese)
21 Andrew D E, Mary A H. Standards Methods for the Examination of Water and Wastewater. 20th ed. Washington D C: American Public Health Association, 1998
22 Hua I, Hoffmann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environmental Science &amp; Technology , 1997, 31(8): 2237–2243
doi: 10.1021/es960717f
23 Schl?fer O, Onyeche T, Bormann H, Schroder C, Sievers M. Ultrasound stimulation of micro-organisms for enhanced biodegradation. Ultrasonics , 2002, 40(1–8): 25–29
doi: 10.1016/S0041-624X(02)00086-0
24 Mikkelsen L H. The shear sensitivity of activated sludge - Relations to filterability, rheology and surface chemistry. Colloid and Surface A , 2001, 182(1–3): 1–14
doi: 10.1016/S0927-7757(00)00772-X
25 Emir E, Erdincler A. The role of compatibility in liquid-solid separation of wastewater sludges. Water Science and Technology , 2006, 53(7): 121–126
doi: 10.2166/wst.2006.215
26 Keiding K, Nielsen P H. Desorption of organic macromolecules from activated sludge: Effect of ionic composition. Water Research , 1997, 31(7): 1665–1672
doi: 10.1016/S0043-1354(97)00011-0
27 Zhang P Y, Zhang G M, Wang W. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresource Technology , 2007, 98(1): 207–210
doi: 10.1016/j.biortech.2005.12.002
28 Kopp J, Dichtl N. Prediction of full-scale dewatering results by determining the water distribution of sewage sludges. Water Science and Technology , 2001, 42(11): 141–149
[1] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[2] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[3] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
[4] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[5] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[6] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
[7] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[8] Kit Wayne Chew, Pau Loke Show, Yee Jiun Yap, Joon Ching Juan, Siew Moi Phang, Tau Chuan Ling, Jo-Shu Chang. Sonication and grinding pre-treatments on Gelidium amansii seaweed for the extraction and characterization of Agarose[J]. Front. Environ. Sci. Eng., 2018, 12(4): 2-.
[9] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[10] Ran Yu, Shiwen Zhang, Zhoukai Chen, Chuanyang Li. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement[J]. Front. Environ. Sci. Eng., 2017, 11(1): 10-.
[11] Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON. Modification of the activated sludge model for chemical dosage[J]. Front. Environ. Sci. Eng., 2015, 9(4): 694-701.
[12] Zheng LI,Rong QI,Wei AN,Takashi MINO,Tadashi SHOJI,Willy VERSTRAETE,Jian GU,Shengtao LI,Shiwei XU,Min YANG. Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference[J]. Front. Environ. Sci. Eng., 2015, 9(3): 534-544.
[13] Xi CHEN,Linjiang YUAN,Wenjuan LU,Yuyou LI,Pei LIU,Kun NIE. Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated sludge system[J]. Front. Environ. Sci. Eng., 2015, 9(2): 324-333.
[14] Xiangliang PAN, Jing LIU, Wenjuan SONG, Daoyong ZHANG. Biosorption of Cu(II) to extracellular polymeric substances (EPS) from Synechoeystis sp.: a fluorescence quenching study[J]. Front Envir Sci Eng, 2012, 6(4): 493-497.
[15] Ling-Ling Wang, Shan Chen, Hai-Ting Zheng, Guo-Qing Sheng, Zhi-Jun Wang, Wen-Wei Li, Han-Qing Yu. A new polystyrene-latex-based and EPS-containing synthetic sludge[J]. Front Envir Sci Eng, 2012, 6(1): 131-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed