Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 17-25    https://doi.org/10.1007/s11783-011-0371-x
RESEARCH ARTICLE
Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions
Yuchi LEE1, Shanglien LO1(), Jeff KUO2, Chinghong HSIEH1
1. Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, Taiwan University, Taipei 10672, China; 2. Department of Civil and Environmental Engineering, California State University, Fullerton, CA 92834-6870, USA
 Download: PDF(225 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microwave-hydrothermal treatment of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water with persulfate (S2O82-) has been found effective. However, applications of this process to effectively remediate PFOA pollution require a better understanding on free-radical scavenging reactions that also take place. The objectives of this study were to investigate the effects of pH (pH= 2.5, 6.6, 8.8, and 10.5), chloride concentrations (0.01–0.15 mol·L-1), and temperature (60°C, 90°C, and 130°C) on persulfate oxidation of PFOA under microwave irradiation. Maximum PFOA degradation occurred at pH 2.5, while little or no degradation at pH 10.5. Lowering system pH resulted in an increase in PFOA degradation rate. Both high pH and chloride concentrations would result in more scavenging of sulfate free radicals and slow down PFOA degradation. When chloride concentrations were less than 0.04 mol·L-1 at 90°C and 0.06 mol·L-1 at 60°C, presence of chloride ions had insignificant impacts on PFOA degradation. However, beyond these concentration levels, PFOA degradation rates reduced significantly with an increase in chloride concentrations, especially under the higher temperature.

Keywords microwave      perfluorooctanoic acid      pH      persulfate      chloride ions      perfluorocarboxylic acids     
Corresponding Author(s): LO Shanglien,Email:sllo@ntu.edu.tw   
Issue Date: 01 February 2012
 Cite this article:   
Yuchi LEE,Shanglien LO,Jeff KUO, et al. Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions[J]. Front Envir Sci Eng, 0, (): 17-25.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0371-x
https://academic.hep.com.cn/fese/EN/Y0/V/I/17
Fig.1  Comparison of PFOA decomposition (254 μmol·L) at different temperatures with or without persulfate (PS, 10 mmol·L), and with or without MW
Fig.2  Comparison of the formation of during decomposition of PFOA (254 μmol·L) with 10 mmol·L and microwave at 60°C, 90°C, and 130°C
Fig.3  Comparison of PFOA decomposition with 10 mmol·L PS at 90°C under different pHs
Fig.4  Comparison of formation of during decomposition of PFOA with 10 mmol·L PS and MW at different pHs
Fig.5  Comparison of solution pH value on the defluorination ratios of PFOA (254 μmol·L) with 10 mmol·L and microwave at 90°C
Entryinitial pHrate constant/h-1 a)decomposition efficiency / final pH
0.5h b)1h b)2h b)4h b)
1 c)3.76— / 2.72— / 2.38— / 2.31— / 2.30
210.60.110.0%/ 10.23.91%/ 2.8419.8%/ 2.5224.9%/ 2.41
38.80.5320.5%/ 2.5445.3%/ 2.2764.9%/ 2.2174.2%/ 2.19
43.60.7529.8%/ 2.1751.1%/ 2.1478.5%/ 2.1181.4%/ 2.08
52.30.8238.2%/ 2.0462.1%/ 1.9981.8%/ 1.9485.7%/ 1.88
Tab.1  Calculated pseudo-first-order constants, decompsition ratio of PFOA and solution pH under MW irradiation at 90°C at different initial pH values. Initial pH value in the original 254 μmol·L PFOA solution (without pH adjustment) was around 3.6, pH adjustments were made by NaOH or HSO
Fig.6  Comparison of various ZVI applying on PFOA (240.7 μmol·L) decomposition under MW irradiation at 90°C
Fig.7  Comparison of chloride ions (0-0.15 mol·L) on persulfate oxidation constants of PFOA at 60°C and 90°C
Fig.8  Comparison of the PFOA concentration, defluorination ratio, and mass balance of F element during decomposition of PFOA (254 μmol·L) with 10 mmol·L PS and MW at 90°C under phosphate-buffered pH 2.5
Fig.9  Concentrations of intermediates formed at various reaction times by degradation of PFOA (254 μmol·L) with 10 mmol·L PS at 90°C
1 Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology , 2006, 40(1): 32-44
doi: 10.1021/es0512475 pmid:16433330
2 Renner R. Growing concern over perfluorinated chemicals. Environmental Science & Technology , 2001, 35(7): 154A-160A
doi: 10.1021/es012317k pmid:11348100
3 So M K, Taniyasu S, Yamashita N, Giesy J P, Zheng J, Fang Z, Im S H, Lam P K S. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology , 2004, 38(15): 4056-4063
doi: 10.1021/es049441z pmid:15352441
4 Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Mimura M, Watanabe I, Tanabe S, Kannan K. Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan. Chemosphere , 2008, 72(10): 1409-1412
doi: 10.1016/j.chemosphere.2008.05.034 pmid:18602659
5 Kannan K, Perrotta E, Thomas N J. Association between perfluorinated compounds and pathological conditions in southern sea otters. Environmental Science & Technology , 2006, 40(16): 4943-4948
doi: 10.1021/es060932o pmid:16955890
6 Tao L, Ma J, Kunisue T, Libelo E L, Tanabe S, Kannan K. Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environmental Science & Technology , 2008, 42(22): 8597-8602
doi: 10.1021/es801875v pmid:19068854
7 Brooke D, Footitt A, Nwaogu T A. Environmental Risk Evaluation Report: Perfluorooctane Sulfonate (PFOS). Building Research Establishment Ltd., Risk and Policy Analysts Ltd., and UK Environment Agency’s Science Group ; 2004 (Available at URL: http://www.environmentagency.gov.uk/commondata/105385/pfos_rer_sept04_864557.pdf)
8 Key B D, Howell R D, Criddle C S. Fluorinated organics in the biosphere. Environmental Science & Technology , 1997, 31(9): 2445-2454
doi: 10.1021/es961007c
9 Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation of peerfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environmental Science & Technology , 2008, 42(21): 8057-8063
doi: 10.1021/es8013858 pmid:19031902
10 Wang Y, Zhang P, Pan G, Chen H. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254nm UV light. Journal of Hazardous Materials , 2008, 160(1): 181-186
doi: 10.1016/j.jhazmat.2008.02.105 pmid:18400382
11 Lee Y C, Lo S L, Chiueh P T, Chang D G. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Research , 2009, 43(11): 2811-2816
doi: 10.1016/j.watres.2009.03.052 pmid:19443010
12 Lee Y C, Lo S L, Chiueh P T, Liou Y H, Chen M L. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation. Water Research , 2010, 44(3): 886-892
doi: 10.1016/j.watres.2009.09.055 pmid:19879622
13 Yang S, Wang P, Yang X, Wei G, Zhang W, Shan L. A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. Journal of Environmental Sciences (China) , 2009, 21(9): 1175-1180
doi: 10.1016/S1001-0742(08)62399-2 pmid:19999962
14 Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere , 2002, 49(4): 413-420
doi: 10.1016/S0045-6535(02)00330-2 pmid:12365838
15 House D A. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews , 1962, 62(3): 185-203
doi: 10.1021/cr60217a001
16 Norman R O C, Storey P M, West P R. Electron spin resonance studies. Part XXV. Reactions of sulphate radical anion with organic compounds. Journal of the Chemical Society, Section B: Physical Organic , 1970, 1087-1095
doi: 10.1039/j29700001087
17 Peyton G R. The free-radical chemistry of persulfate based total organic carbon analyzers. Marine Chemistry , 1993, 41(1-3): 91-103
doi: 10.1016/0304-4203(93)90108-Z
18 Yu X Y, Bao Z C, Baker J R. Free radical reaction involving Cl·, Cl2· and SO4-· in the 248 nm photolysis of aqueous solutions containing SO42- and Cl-. Journal of Physical Chemistry A , 2004, 108(2): 295-308
doi: 10.1021/jp036211i
19 Goulden P D, Anthony D H J. Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Analytical Chemistry , 1978, 50(7): 953-958
doi: 10.1021/ac50029a032
20 Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science & Technology , 2004, 38(22): 6118-6124
doi: 10.1021/es049719n pmid:15573615
21 Furukawa Y, Kim J W, Watkins J, Wilkin R T. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology , 2002, 36(24): 5469-5475
doi: 10.1021/es025533h pmid:12521177
22 Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science & Technology , 2006, 40(3): 1049-1054
doi: 10.1021/es0517419 pmid:16509356
23 Matheson L J, Tratnydk P G. Reductive dehalogenation of chlorinated methanes by Iron Metal. Environmental Science & Technology , 1994, 28(12): 2045-2053
doi: 10.1021/es00061a012
24 Anipsitakis G P, Tufano T P, Dionysiou D D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Research , 2008, 42(12): 2899-2910
doi: 10.1016/j.watres.2008.03.002 pmid:18384835
25 McKenna J H, Doering P H. Measurement of dissolved organic carbon by wet chemical oxidention with persulfate: Influence of chloride concentration and reagent volume. Marine Chemistry , 1995, 48(2): 109-114
doi: 10.1016/0304-4203(94)00049-J
26 Liang C, Wang Z S, Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20°C. The Science of the Total Environment , 2006, 370(2-3): 271-277
doi: 10.1016/j.scitotenv.2006.08.028 pmid:17014891
27 Buxton G V, Bydder M, Salmon G. The reactivity of chlorine atoms in aqueous solution. PartII The equilibrium SO4-·+Cl-Cl·+SO42- Physical Chemistry Chemical Physics , 1999, 1(2): 269-273
doi: 10.1039/a807808d
28 Nohara K, Toma M, Kutsuna S, Takeuchi K, Ibusuki T. Cl atom-initiated oxidation of three homologous methyl perfluoroalkyl ethers. Environmental Science & Technology , 2001, 35(1): 114-120
doi: 10.1021/es000895f pmid:11351993
29 de Bruyn W J, Shorter J A, Davidovits P, Worsnop D R, Zahniser M S, Kolb C E. Uptake of haloacetyl and carbonyl halides by water surfaces. Environmental Science & Technology , 1995, 29(5): 1179-1185
doi: 10.1021/es00005a007
30 Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Treatment technologies for aqueous perfuorooctanesulfonate (PFOS) and perfuorooctanoate (PFOA). Frontiers of Environmental Science & Engineering in China , 2009, 3(2): 129-151
doi: 10.1007/s11783-009-0022-7
[1] Zebin Huo, Mengjun Xi, Lianrui Xu, Chuanjia Jiang, Wei Chen. Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments[J]. Front. Environ. Sci. Eng., 2024, 18(2): 21-.
[2] Kui Zou, Hongyuan Liu, Bo Feng, Taiping Qing, Peng Zhang. Recovery of cyanophycin granule polypeptide from activated sludge: carbon source dependence and aggregation-induced luminescence characteristics[J]. Front. Environ. Sci. Eng., 2024, 18(2): 16-.
[3] Ying Chen, Ning Duan, Linhua Jiang, Fuyuan Xu, Guangbin Zhu, Yao Wang, Yong Liu, Wen Cheng, Yanli Xu. Direct generation of Zn metal using laser-induced ZnS to eradicate carbon emissions from electrolysis Zn production[J]. Front. Environ. Sci. Eng., 2024, 18(1): 7-.
[4] Huijuan Xie, Haiguang Zhang, Xu Wang, Gaoliang Wei, Shuo Chen, Xie Quan. Conductive and stable polyphenylene/CNT composite membrane for electrically enhanced membrane fouling mitigation[J]. Front. Environ. Sci. Eng., 2024, 18(1): 3-.
[5] Jinbo Wang, Jiaping Wang, Wei Nie, Xuguang Chi, Dafeng Ge, Caijun Zhu, Lei Wang, Yuanyuan Li, Xin Huang, Ximeng Qi, Yuxuan Zhang, Tengyu Liu, Aijun Ding. Response of organic aerosol characteristics to emission reduction in Yangtze River Delta region[J]. Front. Environ. Sci. Eng., 2023, 17(9): 114-.
[6] Zhou Zhang, Kai Huo, Tingxuan Yan, Xuwen Liu, Maocong Hu, Zhenhua Yao, Xuguang Liu, Tao Ye. Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11[J]. Front. Environ. Sci. Eng., 2023, 17(8): 101-.
[7] Liyun Song, Shilin Deng, Chunyi Bian, Cui Liu, Zongcheng Zhan, Shuangye Li, Jian Li, Xing Fan, Hong He. NiB2O4 (B = Mn or Co) catalysts for NH3-SCR of NOx at low-temperature in microwave field[J]. Front. Environ. Sci. Eng., 2023, 17(8): 96-.
[8] Zhicheng Liao, Bei Li, Juhong Zhan, Huan He, Xiaoxia Yang, Dongxu Zhou, Guoxi Yu, Chaochao Lai, Bin Huan, Xuejun Pan. Photosensitivity sources of dissolved organic matter from wastewater treatment plants and their mediation effect on 17α-ethinylestradiol photodegradation[J]. Front. Environ. Sci. Eng., 2023, 17(6): 69-.
[9] Huan Xi, Fanlu Min, Zhanhu Yao, Jianfeng Zhang. Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters[J]. Front. Environ. Sci. Eng., 2023, 17(6): 71-.
[10] Qian Li, Zhaoyang Hou, Xingyuan Huang, Shuming Yang, Jinfan Zhang, Jingwei Fu, Yu-You Li, Rong Chen. Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification and Anammox[J]. Front. Environ. Sci. Eng., 2023, 17(6): 68-.
[11] Zhongyao Liang, Yaoyang Xu, Gang Zhao, Wentao Lu, Zhenghui Fu, Shuhang Wang, Tyler Wagner. Approaching the upper boundary of driver-response relationships: identifying factors using a novel framework integrating quantile regression with interpretable machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(6): 76-.
[12] Yirong Hu, Wenjie Du, Cheng Yang, Yang Wang, Tianyin Huang, Xiaoyi Xu, Wenwei Li. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique[J]. Front. Environ. Sci. Eng., 2023, 17(5): 55-.
[13] Haiguang Zhang, Lei Du, Jiajian Xing, Gaoliang Wei, Xie Quan. Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A[J]. Front. Environ. Sci. Eng., 2023, 17(5): 59-.
[14] Haojun Lei, Kaisheng Yao, Bin Yang, Lingtian Xie, Guangguo Ying. Occurrence, spatial and seasonal variation, and environmental risk of pharmaceutically active compounds in the Pearl River basin, South China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 46-.
[15] Xinjie Yan, Xunyu Shen, Jipeng Wang, Jinlong Zhuang, Yu Wang, Jinchi Yao, Hong Liu, Yongdi Liu, James P. Shapleigh, Wei Li. Higher N2O production in sequencing batch reactors compared to continuous stirred tank reactors: effect of feast-famine cycles[J]. Front. Environ. Sci. Eng., 2023, 17(4): 50-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed