Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (4) : 512-518    https://doi.org/10.1007/s11783-011-0372-9
RESEARCH ARTICLE
Migration of manganese and iron during the adsorption-regeneration cycles for arsenic removal
Fangfang CHANG1, Jiuhui QU2(), Xu ZHAO2, Wenjun LIU1, Kun WU2
1. School of Environment, Tsinghua University, Beijing 100084, China; 2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
 Download: PDF(340 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fe-Mn binary oxide incorporated into porous diatomite (FMBO-diatomite) was prepared in situ and regenerated in a fixed-bed column for arsenite [As(III)] and arsenate [As(V)] removal. Four consecutive adsorption cycles were operated under the following conditions: Initial arsenic concentration of 0.1 mg·L-1, empty bed contact time of 5 min, and pH 7.0. About 3000, 3300, 3800, and 4500 bed volumes of eligible effluent (arsenic concentration≤0.01 mg·L-1) were obtained in four As(III) adsorption cycles; while about 2000, 2300, 2500, and 3100 bed volumes of eligible effluent were obtained in four As(V) adsorption cycles. The dissection results of FMBO-diatomite fixed-bed exhibited that small amounts of manganese and iron were transferred from the top of the fixed-bed to the bottom of the fixed-bed during As(III) removal process. Compared to the extremely low concentration of iron (<0.01 mg·L-1), the fluctuation concentration of Mn2+ in effluent of the As(III) removal column was in a range of 0.01–0.08 mg·L-1. The release of manganese suggested that manganese oxides played an important role in As(III) oxidation. Determined with the US EPA toxicity characteristic leaching procedure (TCLP), the leaching risk of As(III) on exhausted FMBO-diatomite was lower than that of As(V).

Keywords arsenic      adsorption      filtration      regeneration      fixed-bed     
Corresponding Author(s): QU Jiuhui,Email:jhqu@rcees.ac.cn   
Issue Date: 05 December 2011
 Cite this article:   
Fangfang CHANG,Jiuhui QU,Xu ZHAO, et al. Migration of manganese and iron during the adsorption-regeneration cycles for arsenic removal[J]. Front Envir Sci Eng Chin, 2011, 5(4): 512-518.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0372-9
https://academic.hep.com.cn/fese/EN/Y2011/V5/I4/512
Fig.1  SEM images and EDX analysis. (a) Plain porous diatomite (magnification 150 × ), (b) EDX of diatomite, (c) FMBO-diatomite (magnification 120 × ), (d) EDX of FBMO-diatomite
Fig.2  Breakthrough curves of fixed-bed column for As(III) removal by FMBO-diatomite in adsorption-regeneration cycle I-IV (influent arsenic concentration of 0.1 mg L, initial influent pH 7.0, and EBCT 5 min)
Fig.3  The effluent manganese and iron concentrations in four adsorption-regeneration cycles of As(III) column
Fig.4  Breakthrough curves of fixed-bed column for As(V) removal by FMBO-diatomite in four adsorption-regeneration cycles (influent arsenic concentration of 0.1 mg·L, initial influent pH 7.0, and EBCT 5 min)
Fig.5  The effluent manganese and iron concentrations in four adsorption-regeneration cycles of As(V) column
Fig.6  Shematic of arsenic, manganese, and iron amounts in different depth of exhausted FMBO-diatomite fixed-bed after removing As(III) and As(V)
Fig.7  Leaching risk of arsenic in FMBO-diatomite fixed-bed performed by TCLP
1 Yoshida T, Yamauchi H, Fan Sun G. Chronic health effects in people exposed to arsenic via the drinking water: Dose-response relationships in review. Toxicology and Applied Pharmacology , 2004, 198(3): 243–252
doi: 10.1016/j.taap.2003.10.022 pmid:15276403
2 Lee Y, Um I H, Yoon J. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environmental Science &amp; Technology , 2003, 37(24): 5750–5756
doi: 10.1021/es034203+ pmid:14717190
3 Gholami M M, Mokhtari M A, Aameri A, Alizadeh Fard M R. Application of reverse osmosis technology for arsenic removal from drinking water. Desalination , 2006, 200(1-3): 725–727
doi: 10.1016/j.desal.2006.03.504
4 Di Natale F, Erto A, Lancia A, Musmarra D. Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Research , 2008, 42(8-9): 2007–2016
doi: 10.1016/j.watres.2007.12.008 pmid:18222519
5 Sarkar S, Blaney L M, Gupta A, Ghosh D, Sengupta A K. Arsenic removal from groundwater and its safe containment in a rural environment: Validation of a sustainable approach. Environmental Science &amp; Technology , 2008, 42(12): 4268–4273
doi: 10.1021/es702556t pmid:18605543
6 Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry , 2002, 17(5): 517–568
doi: 10.1016/S0883-2927(02)00018-5
7 Lin T F, Wu J K. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics. Water Research , 2001, 35(8): 2049–2057
doi: 10.1016/S0043-1354(00)00467-X pmid:11337853
8 Richmond W R, Loan M, Morton J, Parkinson G M. Arsenic removal from aqueous solution via ferrihydrite crystallization control. Environmental Science &amp; Technology , 2004, 38(8): 2368–2372
doi: 10.1021/es0353154 pmid:15116842
9 Banerjee K, Amy G L, Prevost M, Nour S, Jekel M, Gallagher P M, Blumenschein C D. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Research , 2008, 42(13): 3371–3378
doi: 10.1016/j.watres.2008.04.019 pmid:18538818
10 Katsoyiannis I A, Ruettimann T, Hug S J. pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science &amp; Technology , 2008, 42(19): 7424–7430
doi: 10.1021/es800649p pmid:18939581
11 Chang F F, Qu J H, Liu H J, Liu R P, Zhao X. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation. Journal of Colloid and Interface Science , 2009, 338(2): 353–358
doi: 10.1016/j.jcis.2009.06.049 pmid:19665722
12 Chang F F, Qu J H, Liu R P, Zhao X, Lei P J. Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide. Journal of Environmental Sciences (China) , 2010, 22(1): 1–6
doi: 10.1016/S1001-0742(09)60067-X pmid:20397380
13 Jessen S, Larsen F, Koch C B, Arvin E. Sorption and desorption of arsenic to ferrihydrite in a sand filter. Environmental Science &amp; Technology , 2005, 39(20): 8045–8051
doi: 10.1021/es050692x pmid:16295873
14 Leupin O X, Hug S J, Badruzzaman A B M. Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environmental Science &amp; Technology , 2005, 39(20): 8032–8037
doi: 10.1021/es050205d pmid:16295871
15 US EPA. Hazardous waste management system; Identification and listing of hazardous waste; toxicity characteristics revisions; final rule. Federal Register , 1990, 55(61): 11798–11877
16 Zhang G S, Qu J H, Liu H J, Liu R P, Li G T. Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption. Environmental Science &amp; Technology , 2007, 41(13): 4613–4619
doi: 10.1021/es063010u pmid:17695905
17 Ministry of Health of China and Standardization Administration of China. Standard for Drinking Water Quality (GB 5749-2006), 2007, 7
18 Moore J N, Walker J R, Hayes T H. Reaction scheme for the oxidation of As(III) to As(V) by birnessite. Clays and Clay Minerals , 1990, 38(5): 549–555
doi: 10.1346/CCMN.1990.0380512
19 Chang Y Y, Song K H, Yang J K. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand. Journal of Hazardous Materials , 2008, 150(3): 565–572
doi: 10.1016/j.jhazmat.2007.05.005 pmid:17570581
20 Manning B A, Fendorf S E, Bostick B, Suarez D. Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environmental Science &amp; Technology , 2002, 36(5): 976–981
[1] Yanxiao Si, Fang Zhang, Hong Chen, Guanghe Li, Haichuan Zhang, Dun Liu. Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation[J]. Front. Environ. Sci. Eng., 2021, 15(6): 112-.
[2] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[3] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[4] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[5] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[6] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[7] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[8] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Yameng Li, Ziyu Liang. The coupling of sand with ZVI/oxidants achieved proportional and highly efficient removal of arsenic[J]. Front. Environ. Sci. Eng., 2020, 14(6): 94-.
[9] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[10] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[11] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[12] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[13] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[14] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[15] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed