Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 246-254    https://doi.org/10.1007/s11783-011-0381-8
RESEARCH ARTICLE
Macrozoobenthic assemblages in relation to environments of the Yangtze-isolated lakes
Baozhu PAN1,2, Haijun WANG1, Hongzhu WANG1(), Zhaoyin WANG3
1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 2. Changjiang River Scientific Research Institute, Wuhan 430010, China; 3. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(299 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Eutrophication can shift lakes from a clear, macrophyte-dominated state to a turbid, algae-dominated state, and different habitat condition supports different fauna. Macrozoobenthos are good indicators of water environment, and studies on macrozoobenthic assemblage characteristics can help us to know which state a lake is in, thus provide the basis for its eutrophication control. In this study, a systematic investigation on macrozoobenthos was conducted in 17 Yangtze-isolated lakes to explore the macroecological laws of macrozoobenthic assemblages. Detrended correspondence analysis (DCA) revealed that variance of benthic assemblage structure occurred in two types of lakes. In macrophytic lakes, altogether 51?taxa of macrozoobenthos were identified. The average density and biomass of total macrozoobenthos were 2231?individuals·m-2 and 1.69 g dry weight·m-2, respectively. Macrozoobenthic assemblage was characterized by dominance of scrapers (i.e. gastropods). In algal lakes, altogether 20 taxa of macrozoobenthos were identified. The average density and biomass of total macrozoobenthos were 2814 individuals·m-2 and 1.38 g dry weight·m-2, respectively. Macrozoobenthic assemblage was characterized by dominance of collector-gatherers (i.e. oligochaetes). Wet biomass of submersed macrophytes (BMac) and phytoplankton chlorophyll a concentration (Chla) were demonstrated as the key factor structuring macrozoobenthic assemblages in macrophytic and algal lakes, respectively.

Keywords macrozoobenthos      assemblage characteristics      environment analyses      macrophytic lake      algal lake     
Corresponding Author(s): WANG Hongzhu,Email:wanghz@ihb.ac.cn   
Issue Date: 01 April 2012
 Cite this article:   
Baozhu PAN,Haijun WANG,Hongzhu WANG, et al. Macrozoobenthic assemblages in relation to environments of the Yangtze-isolated lakes[J]. Front Envir Sci Eng, 0, (): 246-254.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0381-8
https://academic.hep.com.cn/fese/EN/Y0/V/I/246
Fig.1  Distribution of studied lakes along the Yangtze River. Lakes 1-8 are situated in the suburban regions, and these macrophytic lakes are as follows: HHL, Honghu Lake (Lake 1, 8 sites); LHL, Luhu Lake (Lake 2, 8 sites); NBZL, Nanbeizui Lake (Lake 3, 6 sites); NSL, Niushan Lake (Lake 4, 7 sites); QDL, Qiaodun Lake (Lake 5, 4 sites); TJDL, Taojiada Lake (Lake 6, 3 sites); XSHL, Xiaosihai Lake (Lake 7, 10 sites); ZDL, Zhangdu Lake (Lake 8, 6 sites). Lakes 9-17 are situated in the urban regions, and these algal lakes are as follows: GHL, Gehu Lake (Lake 9, 7 sites); HXL, Hongxing Lake (Lake 10, 4 sites); LYL, Longyang Lake (Lake 11, 6 sites); MSL, Moshui Lake (Lake 12, 5 sites); NHL, Nanhu Lake (Lake 13, 7 sites); NTZL, Nantaizi Lake (Lake 14, 6 sites); QLL, Qingling Lake (Lake 15, 3 sites); SJL, Sanjiao Lake (Lake 16, 3 sites); SLQL, Sanliqi Lake (Lake 17, 4 sites)
type of lakescodeA/km2DLDVDRZ/mZSD/mTN/(mg·m-3)TP/(mg·m-3)Chla/(mg·m-3)BMac/(g·m-2)
macrophytic lakesHHL355.01.541.758.121.30.9918405.0795.0
LHL29.85.212.201.821.50.9641313.1506.6
NBZL66.76.401.961.782.51.6770163.1762.4
NSL38.04.802.101.232.22.2804332.2586.1
QDL8.01.951.910.862.72.0536483.86488.3
TJDL3.02.531.880.721.51.2633463.41471.9
XSHL1.53.632.620.572.00.9700193.11123.4
ZDL35.21.221.572.581.71.1717564.51226.1
algal lakesGHL146.51.181.886.371.20.4319721847.70
HXL0.52.122.900.242.80.5788238457.60
LYL1.82.002.400.671.70.481711017113.30
MSL3.02.002.400.672.20.468481050103.60
NHL7.92.172.001.122.50.4825934679.90
NTZL7.92.172.001.871.50.31369076096.00
QLL2.01.812.600.941.30.4163829383.20
SJL2.01.802.500.501.80.5607320550.20
SLQL2.72.102.710.781.90.5709630636.80
Tab.1  Basic morphometric and main environmental parameters of the studied lakes
parametersvaluemacrophytic lakesalgal lakesp
A/km2mean±SE67.2±41.819.4±15.90.295
min-max1.5-355.00.5-146.5
DLmean±SE3.41±0.671.93±0.100.040
min-max1.22-6.401.18-2.17
DVmean±SE2.00±0.112.38±0.120.040
min-max1.57-2.621.88-2.90
DRmean±SE2.21±0.881.39±0.630.463
min-max0.57-8.120.24-6.37
Z/mmean±SE1.9±0.21.9±0.20.853
min-max1.3-2.71.2-2.8
ZSD/mmean±SE1.9±0.30.4±0.00.002
min-max0.9-2.20.3-0.5
TN/(mg·m-3)mean±SE715±416983±1134<0.001
min-max536-9181638-13690
TP/(mg·m-3)mean±SE36±5509±1130.002
min-max16-56205-1050
Chla/(mg·m-3)mean±SE3.5±0.370.2±9.1<0.001
min-max2.2-5.036.8-113.3
BMac/(g·m-2)mean±SE1620.0±705.20.0±0.00.031
min-max506.6-6488.30.0-0.0
Tab.2  Limnological parameters of the studied lakes, with probability levels () determined by Unequal N HSD test after one-way ANOVA
Fig.2  Ordination diagram of sampling lakes by detrended correspondence analysis (DCA) based on abundance of macrozoobenthos.□, macrophytic lakes; ○, algal lakes. The meanings of abbreviative letter of sampling lakes are presented in Fig. 1
Fig.3  Density (, individuals·m) and biomass (, g dry weight·m) (mollusks without shells) of each taxonomic group of macrozoobenthos in macrophytic and algal lakes of the Yangtze basin
Fig.4  Density (, individuals·m), biomass (, g dry weight·m) (mollusks without shells) of each functional feeding group of macrozoobenthos in macrophytic and algal lakes of the Yangtze basin
taxadensity in macrophytic lakesbiomass in macrophytic lakesdensity in algal lakesbiomass in algal lakes
D%B%D%B%
Oligochaeta
Limnodrilus hoffmeisteri00.00.000.0204972.80.6647.8
Branchiura sowerbyi200.90.105.9250.90.096.5
subtotal200.90.105.9207473.70.7554.3
Gastropoda
Bellamya sp.90.40.105.940.10.1712.3
Parafossarulus striatulus99644.60.7946.700.00.000.0
Alocinma longicornis22910.30.2313.600.00.000.0
Radix sp.1958.70.148.300.00.000.0
Hippeutis cantori66529.80.137.700.00.000.0
subtotal209493.81.3982.240.10.1712.3
Insecta
Tanypus sp.50.20.0030.248017.10.3021.7
subtotal50.20.0030.248017.10.3021.7
total211994.91.4988.3255890.91.2288.3
Tab.3  Density (, individuals·m), biomass (, g dry weight·m) (mollusks without shells) and percentage of dominant taxa in macrophytic and algal lakes of the Yangtze basin
Fig.5  CCA biplots of species-environments. Major environmental variables influencing abundance and distribution of macrozoobenthos in macrophytic lakes (a) and in algal lakes (b) are presented. Environmental parameters: , development of lake volume; , water depth (m); , Secchi depth (m); TN, total nitrogen concentration of water (mg·m); , phytoplankton chlorophyll concentration (mg·m); , wet biomass of submersed macrophytes (g·m)
1 Jin X C, Lu S Y, Hu X Z, Jiang X, Wu F C. Control concept and countermeasures for shallow lakes’ eutrophication in China. Frontiers of Environmental Science & Engineering in China , 2008, 2(3): 257–266
doi: 10.1007/s11783-008-0063-3
2 Scheffer M, Hosper S H, Meijer M L, Moss B, Jeppesen E. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution , 1993, 8(8): 275–279
doi: 10.1016/0169-5347(93)90254-M
3 Hilt S, Gross E M, Hupfer M, Morscheid H, M?hlmann J, Melzer A, Poltz J, Sandrock S, Scharf E M, Schneider S, van de Weyer K. Restoration of submerged vegetation in shallow eutrophic lakes–a guideline and state of the art in Germany. Limnologica , 2006, 36(3): 155–171
doi: 10.1016/j.limno.2006.06.001
4 Whitton B A. River Ecology, Studies in Ecology. Oxford: Blackwell Scientific Publications, 1975
5 Hellawell J M. Biological Indicators of Freshwater Pollution and Ennironmental Management. London: Elsevier Applied Science Publishers, 1986
6 Chen Q Y, Liang Y L, Wu T H. Studies on community structure and dynamics of zoobenthos in Lake Donghu, Wuhan. Acta Hydrobiologica Sinica , 1980, 7: 41–56 (in Chinese)
7 Liang Y L, Liu H Q. Resources, Environment and Fishery Ecological Management of Macrophytic Lakes (No. 1). Beijing: Science Press, 1995 (in Chinese)
8 Gong Z J, Xie P, Wang S D. Macrozoobenthos in 2 shallow, mesotrophic Chinese lakes with contrasting sources of primary production. Journal of the North American Benthological Society , 2000, 19(4): 709–724
doi: 10.2307/1468128
9 Gong Z J, Xie P. Impact of eutrophication on biodiversity of the macrozoobenthos community in a Chinese shallow lake. Journal of Freshwater Ecology , 2001, 16(2): 171–178
doi: 10.1080/02705060.2001.9663802
10 Xiong J L, Mei X G, Hu C L. Comparative study on the community structure and biodiversity of zoobenthos in lakes of different pollution states. Journal of Lake Science , 2003, 15(2): 160–168 (in Chinese)
11 Huang X F. Survey, Observation and Analysis of Lake Ecology. Beijing: Standards Press of China, 1999 (in Chinese)
12 Yan Y J, Liang Y L. A study of dry-to-wet weight ratio of aquatic macroinvertebrates. Journal of Huazhong University of Science & Technology (Natural Science Edition) , 1999, 27(9): 61–63 (in Chinese)
13 Banse K, Mosher S. Adult body mass and annual production/biomass relationships of field population. Ecological Monographs , 1980, 50(3): 355–379
doi: 10.2307/2937256
14 Morse J C, Yang L F, Tian L X. Aquatic Insects of China Useful for Monitoring Water Quality. Nanjing: Hohai University Press, 1994
15 Liang Y L, Wang H Z. Zoobenthos. In: Liu J K, ed. Advanced Hydrobiology . Beijing: Science Press, 1999, 241–259 (in Chinese)
16 ter Braak C J F, Verdonschot P F M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences , 1995, 57(3): 255–289
doi: 10.1007/BF00877430
17 Nürnberg G K. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reservoir Management , 1996, 12(4): 432–447
doi: 10.1080/07438149609354283
18 Jeppesen E, S?ndergaard M, S?ndergaard M, Christoffersen K. The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies , Vol. 131. New York: Springer, 1998
19 Rosine W N. The distribution of invertebrates on submerged aquatic plant surfaces in Muskee Lake, Colorado. Ecology , 1955, 36(2): 308–314
doi: 10.2307/1933237
20 Rooke B J. The invertebrate fauna of four macrophytes in a lotic system. Freshwater Biology , 1984, 14(5): 507–513
doi: 10.1111/j.1365-2427.1984.tb00171.x
21 Thorp J H, Bergey E A. Field experiments on responses of a freshwater benthic macroinvertebrate community to vertebrate predators. Ecology , 1981, 62(2): 365–375
doi: 10.2307/1936711
22 Hargeby A, Andersson G, Blindow I, Johansson S. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia , 1994, 279/280(1): 83–90
doi: 10.1007/BF00027843
23 Newman R M. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society , 1991, 10(2): 89–114
doi: 10.2307/1467571
24 Scheffer M. Ecology of Shallow Lakes. Kluwer Dordrecht: Academic Publishers , 2004
25 Br?nmark C. Interactions between epiphytes, macrophytes and freshwater snail: a review. Journal of Molluscan Studies , 1989, 55(2): 299–311
doi: 10.1093/mollus/55.2.299
26 Jupp B, Spence D W. Limitations on macrophytes in a eutrophic lake, Loch Leven I. Effects of phytoplankton. Journal of Ecology , 1977, 65(1): 175–186
doi: 10.2307/2259072
27 Hough R A, Fornwall M D, Negele B J, Thompson R L, Putt D A. Plant community dynamics in a chain of lakes: principal factors in the decline of rooted macrophytes with eutrophication. Hydrobiologia , 1989, 173(3): 199–217
doi: 10.1007/BF00008968
28 Lamers L P M, Smolders A J P, Roelofs J G M. The restoration of fens in the Netherlands. Hydrobiologia , 2002, 478(1/3): 107–130
doi: 10.1023/A:1021022529475
29 Barko J W. The growth of Myriophyllum spicatum L. in relation to selected characteristics of sediment and solution. Aquatic Botany , 1983, 15(1): 91–103
doi: 10.1016/0304-3770(83)90102-X
30 Cizková-Koncalová H, Kvet J, Thompson K. Carbon starvation: a key to reed decline in eutrophic lakes. Aquatic Botany , 1992, 43(2): 105–113
doi: 10.1016/0304-3770(92)90036-I
31 Strayer D. The benthic micrometazoans of Mirror Lake, New Hampshire. Archiv fuer Hydrobiologie , 1985, 72(supp.): 287–426
32 Brinkhurst R O, Gelder S R. Annelida: Oligochaeta and Branchiobdcllidi. In: Thorp J H, Covich A P, eds. Ecology and Classification of North American Freshwater Invertebrate. Inc.. San Diego , CA: Academic Press, 1991, 400–433
33 Roback S S. Insects (Arthropoda: Insecta). In: Hart C W, Fuller S L H, eds. Pollution Ecology of Freshwater Invertebrates . New York: Academic Press, 1974, 313–376
34 Wiederholm T. Responses of aquatic insects to environmental pollution. In: Resh V H, Rosenberg D M, eds. The Ecology of Aquatic Insects . New York: Praeger, 1984, 508–557
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed