Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (1) : 125-130    https://doi.org/10.1007/s11783-011-0384-5
RESEARCH ARTICLE
Effect of illumination on the hydrogen-production capability of anaerobic activated sludge
Guochen ZHENG1,3(), Jianzheng LI2, Feng ZHAO1, Liguo ZHANG2, Li WEI2, Qiaoying BAN2, Yongsheng ZHAO3
1. Songliao River Basin Water Resources Protection Bureau, Changchun 130021, China; 2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; 3. Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun 130021, China
 Download: PDF(214 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To investigate the influence of illumination on the fermentative hydrogen production system, the hydrogen production efficiencies of two kinds of anaerobic activated sludge (floc and granule) from an anaerobic baffled reactor were detected under visible light, dark and light-dark, respectively. The 10 mL floc sludge or granular sludge was respectively inoculated to 100 mL diluted molasses (chemical oxygen demand of 8000 mg·L-1) in a 250 mL serum bottle, and cultured for 24 h at 37°C under different illumination conditions. The results showed that the floc was more sensitive to illumination than the granule. A hydrogen yield of 19.8 mL was obtained in the dark with a specific hydrogen production rate of 3.52 mol·kg-1MLVSS·d-1 (floc), which was the highest among the three illumination conditions. Under dark condition, the hydrogen yield of floc sludge reached the highest with the specific hydrogen production rate of 3.52 mol·kg-1MLVSS·d-1, and under light-dark, light, the specific hydrogen production rate was 3.11 and 2.21 mol·kg-1MLVSS·d-1, respectively. The results demonstrated that the illumination may affect the dehydrogenase activity of sludge as well as the activity of hydrogen-producing acetogens and then impact hydrogen production capacity.

Keywords biohydrogen production      dark fermentation      anaerobic activated sludge      light      dehydrogenase     
Corresponding Author(s): ZHENG Guochen,Email:wasaizgc@163.com   
Issue Date: 01 February 2012
 Cite this article:   
Guochen ZHENG,Jianzheng LI,Feng ZHAO, et al. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge[J]. Front Envir Sci Eng, 2012, 6(1): 125-130.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0384-5
https://academic.hep.com.cn/fese/EN/Y2012/V6/I1/125
Fig.1  Effect of illumination on biogas and H
Fig.1  Effect of illumination on biogas and H
Fig.2  Effect of illumination on pH
Fig.2  Effect of illumination on pH
Fig.3  Effect of illumination on alkalinity
Fig.3  Effect of illumination on alkalinity
Fig.4  Effect of illumination on COD removal
Fig.4  Effect of illumination on COD removal
illuminationVFAs and ethanol/(mg·L-1)contents/%
ethanolacetic acidpropionic acidbutyric acidvaleric acid
light1036.0220.4926.5326.4622.234.28
dark956.4422.3437.4719.94±14.465.77
Light/-dark981.0623.9932.3122.7417.213.74
Tab.1  Effect of illumination on VFAs and ethanol for floc
illuminationVFAs and ethanol(mg·L-1)contents/%
ethanolacetic acidpropionic acidbutyric acidvaleric acid
light1183.5913.8428.0937.5615.965.55
dark1106.9313.8233.6436.2214.092.22
light-dark1167.7415.7828.8535.7614.515.09
Tab.2  Effect of illumination on VFAs and ethanol for granule
Fig.5  Effect of illumination on dehydrogenase activity
Fig.5  Effect of illumination on dehydrogenase activity
Fig.6  Effect of illumination on specific hydrogen production rate (SHPR)
Fig.6  Effect of illumination on specific hydrogen production rate (SHPR)
1 Chen C Y, Chang J S. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochemistry , 2006, 41(9): 2041–2049
doi: 10.1016/j.procbio.2006.05.005
2 Das D, Veziroglu T N. Advances in biological hydrogen production processes. International Journal of Hydrogen Energy , 2008, 33(21): 6046–6057
doi: 10.1016/j.ijhydene.2008.07.098
3 Liu B F, Ren N Q, Xing D F, Ding J, Zheng G X, Guo W Q, Xu J F, Xie G J. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Bioresource Technology , 2009, 100(10): 2719–2723
doi: 10.1016/j.biortech.2008.12.020 pmid:19200719
4 Meherkotay S, Das D. Biohydrogen as a renewable energy resource-Prospects and potentials. International Journal of Hydrogen Energy , 2008, 33(1): 258–263
doi: 10.1016/j.ijhydene.2007.07.031
5 Argun H, Kargi F, Kapdan I K. Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. International Journal of Hydrogen Energy , 2008, 33(24): 7405–7412
doi: 10.1016/j.ijhydene.2008.09.059
6 Redwood M D, Macaskie L E. A two-stage, two-organism process for biohydrogen from glucose. International Journal of Hydrogen Energy , 2006, 31(11): 1514–1521
doi: 10.1016/j.ijhydene.2006.06.018
7 Finster K, Thomsen T R, Ramsing N B. Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots. International Journal of Systematic and Evolutionary Microbiology , 2001, 51(Pt 6): 2055–2061
pmid:11760947
8 Nath K, Das D. Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. International Journal of Hydrogen Energy , 2009, 34(17): 7497–7501
doi: 10.1016/j.ijhydene.2008.11.065
9 Abildgaard L, Ramsing N B, Finster K. Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov. International Journal of Systematic and Evolutionary Microbiology , 2004, 54(2): 393–399
doi: 10.1099/ijs.0.02820-0 pmid:15023950
10 Belokopytov B F, Laurinavichius K S, Laurinavichene T V, Ghirardi M L, Seibert M, Tsygankov A A. Towards the integration of dark-and photo-fermentative waste treatment. 2. Optimization of starch-dependent fermentative hydrogen production. International Journal of Hydrogen Energy , 2009, 34(8): 3324–3332
doi: 10.1016/j.ijhydene.2009.02.042
11 Uyar B, Eroglu I, Yucel M, Gunduz U, Turker L. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. International Journal of Hydrogen Energy , 2007, 32(18): 4670–4677
doi: 10.1016/j.ijhydene.2007.07.002
12 Guan Y F, Deng M C, Yu X J, Zhang W. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochemical Engineering Journal , 2004, 19(1): 69–73
doi: 10.1016/j.bej.2003.10.006
13 Laurinavichene T, Tekucheva D, Laurinavichius K, Ghirardi M, Seibert M, Tsygankov A. Towards the integration of dark and photo fermentative waste treatment. 1. Hydrogen photoproduction by purple bacterium Rhodobacter capsulatus using potential products of starch fermentation. International Journal of Hydrogen Energy , 2008, 33(23): 7020–7026
doi: 10.1016/j.ijhydene.2008.09.033
14 Ren N Q, Liu B F, Ding J, Xie G J. Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge. Bioresource Technology , 2009, 100(1): 484–487
doi: 10.1016/j.biortech.2008.05.009 pmid:18573657
15 Khanal S K, Chen W H, Li L, Sung S W. Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy , 2004, 29: 1123–1131
16 Sasikala C, Ramana C V, Rao P R. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter-Sphaeroides Ou-001. International Journal of Hydrogen Energy , 1995, 20(2): 123–126
doi: 10.1016/0360-3199(94)E0009-N
17 Li H Z, Li B K, Zhu G F, Ren N Q, Bo L X, He J G. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). International Journal of Hydrogen Energy , 2007, 32(15): 3274–3283
doi: 10.1016/j.ijhydene.2007.04.023
18 APHA. Standard Methods for the Examination of Water and Wastewater. 19th ed . Washington DC: American Public Health Association, 1995
19 Li J Z, Zheng G C, He J G, Chang S, Qin Z. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. Biotechnology Advances , 2009, 27(5): 573–577
doi: 10.1016/j.biotechadv.2009.04.007 pmid:19393312
20 Müller N, Schleheck D, Schink B. Involvement of NADH: acceptor oxidoreductase and butyryl coenzyme A dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. Journal of Bacteriology , 2009, 191(19): 6167–6177
doi: 10.1128/JB.01605-08 pmid:19648244
21 Yang H W, Jiang Z P, Shi S Q, Jang W Z. INT-dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds. Ecotoxicology and Environmental Safety , 2002, 53(3): 416–421
doi: 10.1016/S0147-6513(02)00002-7 pmid:12485586
22 Kim M, Baek J, Yun Y, Junsim S, Park S, Kim S. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. International Journal of Hydrogen Energy , 2006, 31(6): 812–816
doi: 10.1016/j.ijhydene.2005.06.009
23 Argun H, Kargi F, Kapdan I K. Hydrogen production by combined dark and light fermentation of ground wheat solution. International Journal of Hydrogen Energy , 2009, 34(10): 4305–4311
doi: 10.1016/j.ijhydene.2009.03.033
24 Li J Z, Ren N Q, Li B K, Qin Z, He J G. Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresource Technology , 2008, 99(14): 6528–6537
doi: 10.1016/j.biortech.2007.11.072 pmid:18226523
25 Caravelli A, Giannuzzi L, Zaritzky N. Effect of chlorine on filamentous microorganisms present in activated sludge as evaluated by respirometry and INT-dehydrogenase activity. Water Research , 2004, 38(9): 2395–2404
doi: 10.1016/j.watres.2004.01.044 pmid:15142801
27 Obbard J P. Measurement of dehydrogenase activity using 2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride (INT) in the presence of copper. Biology and Fertility of Soils , 2001, 33(4): 328–330
doi: 10.1007/s003740000332
[1] Pol Masclans Abelló, Vicente Medina Iglesias, M. Antonia de los Santos López, Jesús Álvarez-Flórez. Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 4-.
[2] Yafang Shi, Yunchao Dai, Ziwen Liu, Xiaofeng Nie, Song Zhao, Chi Zhang, Hanzhong Jia. Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances[J]. Front. Environ. Sci. Eng., 2020, 14(6): 106-.
[3] Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin. A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash[J]. Front. Environ. Sci. Eng., 2020, 14(4): 62-.
[4] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[5] Xuan Zheng, Sheng Lu, Liuhanzi Yang, Min Yan, Guangyi Xu, Xiaomeng Wu, Lixin Fu, Ye Wu. Real-world fuel consumption of light-duty passenger vehicles using on-board diagnostic (OBD) systems[J]. Front. Environ. Sci. Eng., 2020, 14(2): 33-.
[6] Ahmad Kalbasi Ashtari, Amir M. Samani Majd, Gerald L. Riskowski, Saqib Mukhtar, Lingying Zhao. Removing ammonia from air with a constant pH, slightly acidic water spray wet scrubber using recycled scrubbing solution[J]. Front. Environ. Sci. Eng., 2016, 10(6): 3-.
[7] Haifa RAJHI,Daniel PUYOL,Mirna C. MARTÍNEZ,Emiliano E. DÍAZ,José L. SANZ. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems[J]. Front. Environ. Sci. Eng., 2016, 10(3): 513-521.
[8] Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms[J]. Front. Environ. Sci. Eng., 2015, 9(5): 912-918.
[9] Eunsung KAN,Chang-Il KOH,Kyunghyuk LEE,Joonwun KANG. Decomposition of aqueous chlorinated contaminants by UV irradiation with H2O2[J]. Front. Environ. Sci. Eng., 2015, 9(3): 429-435.
[10] Wendong WANG,Qinghai FAN,Zixia QIAO,Qin YANG,Yabo WANG,Xiaochang WANG. Effects of water quality on the coagulation performances of humic acids irradiated with UV light[J]. Front. Environ. Sci. Eng., 2015, 9(1): 147-154.
[11] Zhaoheng GONG, Zijuan LAN, Lian XUE, Liwu ZENG, Lingyan HE, Xiaofeng HUANG. Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China[J]. Front Envir Sci Eng, 2012, 6(5): 725-733.
[12] Osamu SHITAMICHI, Taiki MATSUI, Yamei HUI, Weiwei CHEN, Totaro IMASAKA. Determination of persistent organic pollutants by gas chromatography/laser multiphoton ionization/time-of-flight mass spectrometry[J]. Front Envir Sci Eng, 2012, 6(1): 26-31.
[13] Shikang TAO, Xinning WANG, Hong CHEN, Xin YANG, Mei LI, Lei LI, Zhen ZHOU. Single particle analysis of ambient aerosols in Shanghai during the World Exposition, 2010: two case studies[J]. Front Envir Sci Eng Chin, 2011, 5(3): 391-401.
[14] Nanqi REN, Wanqian GUO, Bingfeng LIU, Guangli CAO, Jing TANG. Biological hydrogen production from organic wastewater by dark fermentation in China: Overview and prospects[J]. Front.Environ.Sci.Eng., 2009, 3(4): 375-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed