Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 477-483    https://doi.org/10.1007/s11783-012-0395-x
RESEARCH ARTICLE
Degradation of trace nitrobenzene in water by microwave-enhanced H2O2-based process
Honghu ZENG1(), Lanjing LU1,2, Meina LIANG1, Jie LIU1, Yanghong LI1
1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; 2. Guangxi Polytechnic of Construction, Nanning 530003, China
 Download: PDF(151 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To evaluate possible use of microwave-enhanced H2O2-based (MW/H2O2) process to degrade trace nitrobenzene (NB) in water, a series of batch experiments were conducted. The results showed that 2450MHz microwave irradiation significantly enhanced oxidative decomposition of nitrobenzene (NB) in a H2O2 system. About 90% NB was degraded by the MW/ H2O2 process in 30 min. Moreover, the MW/ H2O2 process could enhanced the oxidative degradation of NB even at relatively low temperature (50°C). When the initial concentration of NB was 300μg/L, the optimum ratio of H2O2 to NB and MW power were 70 and 300 W respectively. The presence of humic acid significantly increased H2O2 dosage. The ultraviolet absorbance at 254 nm (UV254) indicated degradation of NB was stepwise and some intermediates were produced. The gas chromatography-mass spectrometric (GC-MS) analysis showed that main intermediates were nitrophenolic and carbonyl compounds.

Keywords microwave      hydrogen peroxide      nitrobenzene      humic acid     
Corresponding Author(s): ZENG Honghu,Email:zenghonghu@glite.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Lanjing LU,Meina LIANG,Jie LIU, et al. Degradation of trace nitrobenzene in water by microwave-enhanced H2O2-based process[J]. Front Envir Sci Eng, 2012, 6(4): 477-483.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0395-x
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/477
Fig.1  Schematic diagram of experiment equipment. 1-microwave oven; 2-three-neck flask; 3-cooler; 4-thermocouple; 5-3 way valve; 6-recycle pump; 7-rotameter
Fig.2  Degradation of NB by different processes
Fig.3  Effect of MW power on the removal of NB with an initial concentration of 300 μg·L NB and 20 mg·L HO
Fig.4  Effect of initial concentration radio of HO to NB on the removal of NB with an initial concentration of NB of 300 μg·L and MW power of 300 W
Fig.5  Dependence of NB removal on reaction time under different dosage of HO at the presence of humic acid (the MW power of 300 W and the initial concentration of NB of 300 μg·L)
Fig.6  Dependence of UV on reaction time under different dosage of HO (the water background TOC of 7.983 mg·L, the MW power of 300 W and the initial concentration of NB of 300 μg·L)
compound namestructure of derivativesmatching/%
succinateHOOC-CH2CH2-COOH80
4-hydroxybutyric acidHO= CHCH2CH2-COOH92
oxalic acidHOOCCOOH85
malonateHOOCCH2COOH89
phenol95
p-nitrophenol90
4-nitro-1,2-catechol96
2,4,6-trihydroxy nitrobenzene98
Tab.1  Identified products and main fragments determined by GC-MS
1 Xing H J, Wang D K, Zhang C H, XU S W. Study on the accumulation toxicity and oxidative damage of nitrobenzene. Environmental Science , 2009, 28(2): 229-232 (in Chinese)
2 Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup. Water Research , 2003, 37(6): 1223-1230
doi: 10.1016/S0043-1354(02)00490-6 pmid:12598186
3 Qian Y. The Characteristics of Water Particles and Refractory Organics and the Principles of Control Technologies. Vol. 2: Refractory organics. Beijing: China Environmental Science Press, 2000 (in Chinese)
4 Yin J J, Zhang P Y. Removal of trace nitribenzene in water by VUV/TiO2/O3. Environmental Science , 2009, 30(1): 134-139 (in Chinese)
5 Xie J, Qu C T, Wang X Q, Liang W. Decomposition of nitrobenzene using ultrasound/H2O2/ CuO process. Journal of Xi’an University of Science and Technology , 2008, 28(3): 527-530 (in Chinese)
6 Nomiya K, Hashino K, Nemoto Y, Watanabe M. Oxidation of toluene and nitrobenzene with 30% aqueous hydrogen peroxide catalyzed by vanadium(V)- substituted polyoxometalates. Journal of Molecular Catalysis A Chemical , 2001, 176(1-2): 79-86
doi: 10.1016/S1381-1169(01)00258-8
7 Klán P, Vavrik M. Non-catalytic remediation of aqueous solutions by microwave-assisted photolysis in the presence of H2O2. Journal of Photochemistry and Photobiology , 2006, 177(1): 24-33
doi: 10.1016/j.jphotochem.2005.05.008
8 Rodríguez M, Kirchner A, Contreras S, Chamarro E, Esplugas S. Influence of H2O2 and Fe(III) in the photodegradation of nitrobenzene. Journal of Photochemistry and Photobiology , 2000, 133(1-2): 123-127
doi: 10.1016/S1010-6030(00)00223-9
9 Shen J M, Chen Z L, Li X Y, Qi F, Ye M M. Effect and mechanism of degradation of nitrobenzene in aqueous solution by O3/H2O2. Environmental Science , 2006, 27(9): 1791-1797 (in Chinese)
pmid:17117634
10 Zhang J, Ma J, Yang Y X, Wang S J, Qin Q D. Degradation of trace nitrobenzene in aqueous solution by ozone with catalysis of nanosized TiO2 supported on Haydite. Environmental Science , 2007, 28(10): 2208-2212 (In Chinese)
pmid:18268980
11 Ravera M, Buico A, Gosetti F, Cassino C, Musso D, Osella D. Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions by microwave irradiation in the presence of H2O2. Chemosphere , 2009, 74(10): 1309-1314
12 Ju Y M, Yang S G, Ding Y C, Sun C, Gu C G, He Z, Qin C, He H, Xu B. Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: intermediates and degradation mechanism. Journal of Hazardous Materials , 2009, 171(1-3): 123-132
doi: 10.1016/j.jhazmat.2009.05.120 pmid:19573984
13 Han D H, Cha S Y, Yang H Y. Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Research , 2004, 38(11): 2782-2790
doi: 10.1016/j.watres.2004.03.025 pmid:15207609
14 Eskicioglu C, Prorot A, Marin J, Droste R L, Kennedy K J. Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Research , 2008, 42(18): 4674-4682
doi: 10.1016/j.watres.2008.08.010 pmid:18783812
15 Sheng J. Xie i, Zhai G M, Zhang C J, Zhou Q. Liquid-liquid extraction / GC determination of nitrobenzene and its degradation products and study on its affecting factors. Water Purification Technology , 2007, 26(3): 69-73 (in Chinese)
16 Horikoshi S, Serpone N. Photochemistry with microwaves. Journal of Photochemistry and Photobiology , 2009, 10(2): 96-110
doi: 10.1016/j.jphotochemrev.2009.06.001
17 Serpone N, Horikoshi S, Emeline A V. Microwaves in advanced oxidation processes for environmental applications. A brief review. Journal of Photochemistry and Photobiology , 2010, 11(2-3): 114-131
doi: 10.1016/j.jphotochemrev.2010.07.003
18 Yang S Y, Wang P, Yang X, Wei G, Zhang W Y, Shan L. A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. Journal of Environmental Sciences (China) , 2009, 21(9): 1175-1180
doi: 10.1016/S1001-0742(08)62399-2 pmid:19999962
19 Polshettiwar V, Varma R S. Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chemical Society Reviews , 2008, 37(8): 1546-1557
doi: 10.1039/b716534j pmid:18648680
20 Ighigeanu D, Calinescu I, Martin D, Matei C. A new hybrid technique for the volatile organic compounds removal by combined use of electron beams, microwaves and catalysts. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 2008, 266(10): 2524-2528
doi: 10.1016/j.nimb.2008.03.070
21 Tu Q Y, Zhou C S, Tang J P. Microwave assisted-semibionic extraction of lignan compounds from Fructus Forsythiae by orthogonal design. Journal of Central South University of Technology , 2008, 15(1): 59-63
22 Yang Y, Wang P, Shi S J, Liu Y. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater. Journal of Hazardous Materials , 2009, 168(1): 238-245
doi: 10.1016/j.jhazmat.2009.02.038 pmid:19272695
23 Remya N, Lin J G. Microwave-assisted carbofuran degradation in the presence of GAC, ZVI and H2O2: influence of reaction temperature and pH. Separation and Purification Technology , 2011, 76(3): 244-252
doi: 10.1016/j.seppur.2010.10.012
24 Liu J, Wang J, Chen Y H, Lippold H, Lippmann-Pipke J. Comparative characterization of two natural humic acids in the Pearl River Basin, China and their environmental implications. Journal of Environmental Sciences (China) , 2010, 22(11): 1695-1702
doi: 10.1016/S1001-0742(09)60308-9 pmid:21235156
25 Alcántara-Gardu?o M E, Okuda T, Nishijima W, Okada M. Ozonation of trichloroethylene in acetic acid solution with soluble and solid humic acid. Journal of Hazardous Materials , 2008, 160(2-3): 662-667
doi: 10.1016/j.jhazmat.2008.03.106 pmid:18511186
26 Jiang S J, Liu Z Y. The meaning of UV254 as an organic matter monitoring parameter in water supply and wastewater treatment. Journal of Civil, Architectural and Environmental Engineering , 2002, 24(2): 61-65 (in Chinese)
[1] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[2] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[3] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[4] Yongsheng Zhao, Lin Lin, Mei Hong. Nitrobenzene contamination of groundwater in a petrochemical industry site[J]. Front. Environ. Sci. Eng., 2019, 13(2): 29-.
[5] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[6] Xiangqun Chi, Yingying Zhang, Daosheng Wang, Feihua Wang, Wei Liang. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45[J]. Front. Environ. Sci. Eng., 2018, 12(1): 11-.
[7] Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5-.
[8] Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation[J]. Front. Environ. Sci. Eng., 2018, 12(1): 2-.
[9] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
[10] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[11] Huan HE,Qian SUI,Shuguang LU,Wentao ZHAO,Zhaofu QIU,Gang YU. Effect of effluent organic matter on ozonation of bezafibrate[J]. Front. Environ. Sci. Eng., 2015, 9(6): 962-969.
[12] Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI. Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water[J]. Front. Environ. Sci. Eng., 2015, 9(5): 850-860.
[13] Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG. Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor[J]. Front. Environ. Sci. Eng., 2015, 9(5): 879-887.
[14] Yali CHEN,Lu XIONG,Weikang WANG,Xing ZHANG,Hanqing YU. Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage[J]. Front. Environ. Sci. Eng., 2015, 9(5): 897-904.
[15] Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 784-792.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed