Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (6) : 901-906    https://doi.org/10.1007/s11783-012-0403-1
RESEARCH ARTICLE
Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures
Sheng CHANG(), Jianzheng LI, Feng LIU, Ze YU
State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(124 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Decreasing hydrogen partial pressure can not only increase the activity of the hydrogen enzyme but also decrease the products inhibition, so it is an appropriate method to enhance the fermentative hydrogen production from anaerobic mixed culture. The effect of biogas release method on anaerobic fermentative hydrogen production in batch culture system was compared, i.e., Owen method with intermediately release, continuous releasing method, and continuous releasing+ CO2 absorbing. The experimental results showed that, at 35°C, initial pH 7.0 and glucose concentration of 10 g·L-1, the hydrogen production was only 28 mL when releasing gas by Owen method, while it increased two times when releasing the biogas continuously. The cumulative hydrogen production could reach 155 mL when carbon dioxide in the gas stream was continuously absorbed by 1 mol·L-1 NaOH. The results showed that acetate was dominated, accounting for 43% in the dissolved fermentation products in Owen method, whereas the butyrate predominated and reached 47%–53% of the total liquid end products when releasing gas continuously. It is concluded that the homoacetogenesis could be suppressed when absorbing CO2 in the gas phase in fermentative hydrogen production system.

Keywords batch fermentation      hydrogen production      biogas releasing      hydrogen pressure      homoacetogenesis     
Corresponding Author(s): CHANG Sheng,Email:changsheng83@163.com   
Issue Date: 01 December 2012
 Cite this article:   
Sheng CHANG,Jianzheng LI,Feng LIU, et al. Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures[J]. Front Envir Sci Eng, 2012, 6(6): 901-906.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0403-1
https://academic.hep.com.cn/fese/EN/Y2012/V6/I6/901
Fig.1  Schematic diagram of batch culture
Fig.2  Comparison of different biogas release methods on hydrogen production: (a) cumulative hydrogen production; (b) hydrogen content
releasing gas methodsPmax/mLRmax/(mL·h-1)λ/hR2
Owen method29±22.1±0.23.7±0.10.997±0.001
continuous releasing gas92±57.7±0.57.1±0.20.997±0.003
continuous releasing gas+ CO2 absorption161±715.9±1.18.2±0.20.995±0.003
Tab.1  Kinetic parameters of hydrogen production under different gas release methods
releasing gas methodssoluble metabilites/(mg·L-1)
ethanolacetatepropionatebutyrate
Owen method845±571450±95236±18892±56
continuous releasing gas602±36850±73182±111472±116
continuous releasing gas+ CO2 absorption484±261148±10656±31887±127
Tab.2  Effect of different gas release methods on the liquid end fermentation products
releasing gas methodsglucose degradation efficiency/%finial pHbiomass yield/(g·g-1)hydrogen yield/(mol H2·mol-1 glucose)carbon balance/%
Owen method90.0±1.64.9±0.10.79±0.020.28±0.01116±5
continuous releasing gas94.9±2.24.7±0.20.57±0.040.81±0.0399±3
continuous releasing gas+ CO2 absorption95.2±2.64.7±0.10.30±0.031.45±0.0895±2
Tab.3  Comparison of the three fermentation system under different gas release methods
1 Hallenbeck P C, Ghosh D. Advances in fermentative biohydrogen production: the way forward? Trends in Biotechnology , 2009, 27(5): 287-297
doi: 10.1016/j.tibtech.2009.02.004 pmid:19329204
2 Lee H S, Vermaas W F J, Rittmann B E. Biological hydrogen production: prospects and challenges. Trends in Biotechnology , 2010, 28(5): 262-271
doi: 10.1016/j.tibtech.2010.01.007 pmid:20189666
3 Li J, Zheng G, He J, Chang S, Qin Z. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. Biotechnology Advance , 2009, 27(5): 573-577
doi: 10.1016/j.biotechadv.2009.04.007 pmid:19393312
4 Lee H S, Krajmalinik-Brown R, Zhang H, Rittmann B E. An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: Microbial ecology evidence. Biotechnology and Bioengineering , 2009, 104(4): 687-697
pmid:19530077
5 Valdez-Vazquez I, Ríos-Leal E, Carmona-Martínez A, Mu?oz-Páez K M, Poggi-Varaldo H M. Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environmental Science & Technology , 2006, 40(10): 3409-3415
doi: 10.1021/es052119j pmid:16749714
6 Owen W F, Stuckey D C, Healy J B Jr, Young L Y, McCarty P L. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research , 1979, 13(6): 485-492
doi: 10.1016/0043-1354(79)90043-5
7 Logan B E, Oh S E, Kim I S, van Ginkel S. Biological hydrogen production measured in batch anaerobic respirometers. Environmental Science & Technology , 2002, 36(11): 2530-2535
doi: 10.1021/es015783i pmid:12075817
8 Tanisho S, Kuromoto M, Kadokura N. Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy , 1998, 23(7): 559-563
doi: 10.1016/S0360-3199(97)00117-1
9 Oh S E, van Ginkel S, Logan B E. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environmental Science & Technology , 2003, 37(22): 5186-5190
doi: 10.1021/es034291y pmid:14655706
10 Ren N, Guo W, Wang X, Xiang W, Liu B, Wang X, Wang X, Ding J, Chen Z. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. International Journal of Hydrogen Energy , 2008, 33(16): 4318-4324
doi: 10.1016/j.ijhydene.2008.06.003
11 APHA. Standard Methods for Examination of Water and Wastewater. 19th ed . Washington D C: American Public Health Association, 1998
12 Park W, Hyun S H, Oh S E, Logan B E, Kim I S. Removal of headspace CO2 increases biological hydrogen production. Environmental Science & Technology , 2005, 39(12): 4416-4420
doi: 10.1021/es048569d pmid:16047775
13 Minton N P, Clarke D J. Clostridia—Biotechnology Handbook. Vol. 3. New York: Plenum, 1989
14 Ohwaki K, Hungate R E. Hydrogen utilization by clostridia in sewage sludge. Applied and Environmental Microbiology , 1977, 33(6): 1270-1274
pmid:879782
15 Ragsdale S W, Pierce E.Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochimica et Biophysica Acta , 2008, 1784(12): 1873-1898
16 Lay J J, Lee Y J, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research , 1999, 33(11): 2579-2586
doi: 10.1016/S0043-1354(98)00483-7
17 Hawkes F R, Dinsdale R, Hawkes D L, Hussy I. Sustainable fermentative hydrogen production: challenges for process optimization. International Journal of Hydrogen Energy , 2002, 27(11-12): 1339-1347
doi: 10.1016/S0360-3199(02)00090-3
18 Hu B, Chen S L. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy , 2007, 32(15): 3266-3273
doi: 10.1016/j.ijhydene.2007.03.005
19 Wang J L, Wan W. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. International Journal of Hydrogen Energy , 2008, 33(12): 2934-2941
doi: 10.1016/j.ijhydene.2008.03.048
20 Chen C C, Lin C Y, Lin M C. Acid-base enrichment enhances anaerobic hydrogen production process. Applied Microbiology and Biotechnology , 2002, 58(2): 224-228
doi: 10.1007/s002530100814 pmid:11876416
21 Hafez H, Nakhla G, Naggar H, Elbeshbishy E, Baghchehsaraee B. Effect of organic loading on a novel hydrogen bioreactor. International Journal of Hydrogen Energy , 2010, 35(1): 81-92
doi: 10.1016/j.ijhydene.2009.10.051
22 Lee H S, Rittmann B E. Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnology and Bioengineering , 2009, 102(3): 749-758
doi: 10.1002/bit.22107 pmid:18828179
23 Oh S E, Zuo Y, Zhang H, Guiltinan M J, Logan B E, Regan J M. Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. International Journal of Hydrogen Energy , 2009, 34(23): 9347-9353
doi: 10.1016/j.ijhydene.2009.09.084
[1] Giovanni Cagnetta, Kunlun Zhang, Qiwu Zhang, Jun Huang, Gang Yu. Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2[J]. Front. Environ. Sci. Eng., 2019, 13(1): 11-.
[2] Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG. Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell[J]. Front.Environ.Sci.Eng., 2014, 8(4): 624-630.
[3] Gefu ZHU, Chaoxiang LIU, Jianzheng LI, Nanqi REN, Lin LIU, Xu HUANG. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia[J]. Front Envir Sci Eng, 2013, 7(1): 143-150.
[4] Guochen ZHENG, Jianzheng LI, Feng ZHAO, Liguo ZHANG, Li WEI, Qiaoying BAN, Yongsheng ZHAO. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge[J]. Front Envir Sci Eng, 2012, 6(1): 125-130.
[5] Sheng CHANG, Jianzheng LI, Feng LIU. Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor[J]. Front Envir Sci Eng Chin, 2011, 5(1): 140-148.
[6] Bo WANG, Wei WAN, Jianlong WANG, . Effects of nitrate concentration on biological hydrogen production by mixed cultures[J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.
[7] Nanqi REN, Wanqian GUO, Bingfeng LIU, Guangli CAO, Jing TANG. Biological hydrogen production from organic wastewater by dark fermentation in China: Overview and prospects[J]. Front.Environ.Sci.Eng., 2009, 3(4): 375-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed