Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (6) : 797-805    https://doi.org/10.1007/s11783-012-0405-z
RESEARCH ARTICLE
Microbial community and functional genes in the rhizosphere of alfalfa in crude oil-contaminated soil
Yi ZHONG1,2, Jian WANG1,2, Yizhi SONG1,2, Yuting LIANG1,2, Guanghe LI1,2()
1. School of Environment, Tsinghua University, Beijing 100084, China; 2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
 Download: PDF(271 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A rhizobox system constructed with crude oil-contaminated soil was vegetated with alfalfa (Medicago sativa L.) to evaluate the rhizosphere effects on the soil microbial population and functional structure, and to explore the potential mechanisms by which plants enhance the removal of crude oil in soil. During the 80-day experiment, 31.6% of oil was removed from the adjacent rhizosphere (AR); this value was 27% and 53% higher than the percentage of oil removed from the far rhizosphere (FR) and from the non-rhizosphere (NR), respectively. The populations of heterotrophic bacteria and hydrocarbon-degrading bacteria were higher in the AR and FR than in the NR. However, the removal rate of crude oil was positively correlated with the proportion of hydrocarbon-degrading bacteria in the rhizosphere. In total, 796, 731, and 379 functional genes were detected by microarray in the AR, FR, and NR, respectively. Higher proportions of functional genes related to carbon degradation and organic remediation, were found in rhizosphere soil compared with NR soil, suggesting that the rhizosphere selectively increased the abundance of these specific functional genes. The increase in water-holding capacity and decrease in pH as well as salinity of the soil all followed the order of AR>FR>NR. Canonical component analysis showed that salinity was the most important environmental factor influencing the microbial functional structure in the rhizosphere and that salinity was negatively correlated with the abundance of carbon and organic degradation genes.

Keywords crude oil-contaminated soil      phytoremediation      rhizosphere effects      rhizobox      functional genes     
Corresponding Author(s): LI Guanghe,Email:ligh@tsinghua.edu.cn   
Issue Date: 01 December 2012
 Cite this article:   
Yi ZHONG,Jian WANG,Yizhi SONG, et al. Microbial community and functional genes in the rhizosphere of alfalfa in crude oil-contaminated soil[J]. Front Envir Sci Eng, 2012, 6(6): 797-805.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0405-z
https://academic.hep.com.cn/fese/EN/Y2012/V6/I6/797
Fig.1  Diagram of the rhizobox system
characteristicscontaminated soil (used in the rhizobox)uncontaminated soil (used to germinate the plant)
oil content/(mg·g-1)53.00
water content/(%, w/w)15.410.9
soluble salt/(mg·g-1)3.43.9
pH8.78.7
bulk density/(g·cm-3)1.31.2
organic matter/(mg·g-1)101.372.3
Tab.1  Characteristics of the soil samples
Fig.2  Changes in oil content of the soil and root biomass in the rhizobox
Fig.3  Dynamic changes in populations of the heterotrophic bacteria (a) and hydrocarbon-degrading bacteria (b) in different sections of the rhizobox
oil removal rateroot biomasspopulation of heterotrophic bacteriapopulation of hydrocarbon-degrading bacteria
root biomass0.98** a)0.98**----
population of heterotrophic bacteria0.390.05-0.810.450.09---
population of hydrocarbon-degrading bacteria0.640.750.700.640.73-0.890.63-0.33-
RHDB0.90*0.98*0.92*0.88*0.94*-0.690.08-0.770.90*0.81*0.81*
Tab.2  Correlation coefficients () between petroleum removal, bacterial population, and root biomass
functional genesNo. of genes detectedSimpson (1/D)diversity indices Shannon–Weaver H'evenness
AR796407.76.420.93
FR731476.56.730.94
NR379186.15.470.93
Tab.3  Number and diversity of functional genes in different sections of the rhizobox detected by GeoChip after the 80-day experiment
Fig.4  Abundance of various functional gene categories in different sections of the rhizobox after the 80-day experiment
Fig.5  Abundance of functional genes related to petroleum hydrocarbon degradation in different sections of the rhizobox after the 80-day experiment
Fig.6  Environmental factors ((a) water and organic matter; (b) pH and soluble salt) in different regions of the rhizobox on Day 0 and Day 80 of the experiment
factorsNo. of heterotrophic bacteriaNo. of hydrocarbon-degrading bacteriaRHDB
water content0.720.510.75
pH-0.16-0.55-0.91*
soluble salt-0.31-0.67-0.96*
organic matter-0.02-0.42-0.54
Tab.4  Correlation coefficients () between bacterial population and environmental factors
Fig.7  CCA of microbial functional genes and environmental factors in the rhizosphere
1 Liang Y, Zhang X, Dai D, Li G. Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. International Biodeterioration & Biodegradation , 2009, 63(1): 80-87
doi: 10.1016/j.ibiod.2008.07.005
2 Jia J, Li G, Zhong Y. Microbial eco-system of the contaminated soil with petrochemical hydrocarbons in the oilfields of northern China. In: Proceedings of the International Symposium on Water Resources and the Urban Environment 2003. Beijing: China Environmental Science Press, 216-220
3 van Agteren M H, Keuning S, Janssen D B. Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds.Dordrecht: Kluwer Academic Publishers, 1999
4 Zhu L, Lu L, Zhang D. Mitigation and remediation technologies for organic contaminated soils. Frontiers of Environmental Science & Engineering in China , 2010, 4(4): 373-386
doi: 10.1007/s11783-010-0253-7
5 Susarla S, Medina V F, McCutcheon S C. Phytoremediation: an ecological solution to organic chemical contamination. Ecological Engineering , 2002, 18(5): 647-658
doi: 10.1016/S0925-8574(02)00026-5
6 Wang Z, Xu Y, Zhao J, Li F, Gao D, Xing B. Remediation of petroleum contaminated soils through composting and rhizosphere degradation. Journal of Hazardous Materials , 2011, 190(1-3): 677-685
doi: 10.1016/j.jhazmat.2011.03.103 pmid:21524845
7 Gurska J, Wang W, Gerhardt K E, Khalid A M, Isherwood D M, Huang X D, Glick B R, Greenberg B M. Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environmental Science & Technology , 2009, 43(12): 4472-4479
doi: 10.1021/es801540h pmid:19603664
8 Peng S, Zhou Q, Cai Z, Zhang Z. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials , 2009, 168(2-3): 1490-1496
doi: 10.1016/j.jhazmat.2009.03.036 pmid:19346069
9 Korade D L, Fulekar M H. Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. Journal of Hazardous Materials , 2009, 172(2-3): 1344-1350
doi: 10.1016/j.jhazmat.2009.08.002 pmid:19720454
10 Lombi E, Wenzel W W, Gobran G R, Adriano D C. Dependency of phytoavailability of metals on indigenous and induced rhizosphere processes: a review. In: Gobran G R, Wenzel W W, Lombi E, eds. Trace Elements in the Rhizosphere . Boca Raton: CRC Press, 2001, 3-24
11 White P M, Wolf D C, Thoma G J, Reynolds C M. Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water, Air, and Soil Pollution , 2006, 169(1-4): 207-220
doi: 10.1007/s11270-006-2194-0
12 Su Y, Yang X, Chiou C. Effect of rhizosphere on soil microbial community and in-situ pyrene biodegradation. Frontiers of Environmental Science & Engineering in China , 2008, 2(4): 468-474
doi: 10.1007/s11783-008-0078-9
13 Beauregard M S, Hamel C, Atul-Nayyar, St-ArnaudM. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microbial Ecology , 2010, 59(2): 379-389
doi: 10.1007/s00248-009-9583-z pmid:19756847
14 Kirk J L, Klironomos J N, Lee H, Trevors J T. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution , 2005, 133(3): 455-465
doi: 10.1016/j.envpol.2004.06.002 pmid:15519721
15 Wenzel W W, Wieshammer G, Fitz W J, Puschenreiter M. Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution. Plant and Soil , 2001, 237(1): 37-45
doi: 10.1023/A:1013395122730
16 Norvell W A, Cary E E. Potential errors caused by roots in analyses of rhizosphere soil. Plant and Soil , 1992, 143(2): 223-231
doi: 10.1007/BF00007877
17 Awad F, R?mheld V, Marschner H. Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants. Plant and Soil , 1994, 165(2): 213-218
doi: 10.1007/BF00008064
18 Gahoonia T S, Nielsen N E. A method to study zhizosphere processes in thin soil layers of different proximity to roots. Plant and Soil , 1991, 135(1): 143-146
doi:10.1007/BF00014787
19 Gahoonia T S, Nielsen N E. Control of pH at the soil-root interface. Plant and Soil , 1992, 140(1): 49-54
doi: 10.1007/BF00012806
20 Youssef R A, Chino M. Root induced changes in the rhizosphere of plants. I. Changes in relation to the bulk soil. Soil Science and Plant Nutrition , 1989, 35(3): 461-468
21 Youssef R A, Chino M. Root-induced changes in the rhizosphere of plants. II. Distribution of heavy metals across the rhizosphere in soils. Soil Science and Plant Nutrition , 1989, 35(4): 609-621
22 Kirk G J. A model of phosphate solubilization by organic anion excretion from plant roots. European Journal of Soil Science , 1999, 50(3): 369-378
doi: 10.1046/j.1365-2389.1999.00239.x
23 He Z, Zhou J. Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis. Applied and Environmental Microbiology , 2008, 74(10): 2957-2966
doi: 10.1128/AEM.02536-07 pmid:18344333
24 He Z L, Van Nostrand J D, Wu L Y, Zhou J Z. Development and application of functional gene arrays for microbial community analysis. Transactions of Nonferrous Metals Society of China , 2008, 18(6): 1319-1327
doi: 10.1016/S1003-6326(09)60004-2
25 He Z, Gentry T J, Schadt C W, Wu L, Liebich J, Chong S C, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. The ISME Journal , 2007, 1(1): 67-77
doi: 10.1038/ismej.2007.2 pmid:18043615
26 He Z, Van Nostrand J, Deng Y, Zhou J. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Frontiers of Environmental Science & Engineering in China , 2011, 5(1): 1-20
doi: 10.1007/s11783-011-0301-y
27 Liang Y, Nostrand J D, Wang J, Zhang X, Zhou J, Li G. Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil. Chemosphere , 2009, 75(2): 193-199
doi: 10.1016/j.chemosphere.2008.12.007 pmid:19144375
28 He Y, Xu J, Tang C, Wu Y. Facilitation of pentachlorophenol degradation in the rhizosphere of ryegrass (Lolium perenne L.). Soil Biology & Biochemistry , 2005, 37(11): 2017-2024
doi: 10.1016/j.soilbio.2005.03.002
29 Liang R, Li C. Differences in cluster-root formation and carboxylate exudation in Lupinus albus L. under different nutrient deficiencies. Plant and Soil , 2003, 248(1-2): 221-227
doi: 10.1023/A:1022367513025
30 Lu R. Soil Agricultural Chemical Analysis. Nanjing: China Agricultural Science and Technology Press, 1999 (in Chinese)
31 Coulon F, Pelletier E, Gourhant L, Delille D. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere , 2005, 58(10): 1439-1448
doi: 10.1016/j.chemosphere.2004.10.007 pmid:15686763
32 Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology , 1996, 62(2): 316-322
pmid:8593035
33 Wu L, Liu X, Schadt C W, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Applied and Environmental Microbiology , 2006, 72(7): 4931-4941
doi: 10.1128/AEM.02738-05 pmid:16820490
34 Waldron P J, Wu L, van Nostrand J D, Schadt C W, He Z, Watson D B, Jardine P M, Palumbo A V, Hazen T C, Zhou J. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. Environmental Science & Technology , 2009, 43(10): 3529-3534
doi: 10.1021/es803423p pmid:19544850
35 Kirkpatrick W D, White P M Jr, Wolf D C, Thoma G J, Reynolds C M. Petroleum-degrading microbial numbers in rhizosphere and non-rhizosphere crude oil-contaminated soil. International Journal of Phytoremediation , 2008, 10(3): 210-221
doi: 10.1080/15226510801997648 pmid:18710096
36 Krutz L J, Beyrouty C A, Gentry T J, Wolf D C, Reynolds C M. Selective enrichment of a pyrene degrader population and enhanced pyrene degradation in Bermuda grass rhizosphere. Biology and Fertility of Soils , 2005, 41(5): 359-364
doi: 10.1007/s00374-005-0844-9
37 Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America , 1998, 95(12): 6578-6583
doi: 10.1073/pnas.95.12.6578 pmid:9618454
38 Li G, Huang W, Lerner D N, Zhang X. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Research , 2000, 34(15): 3845-3853
doi: 10.1016/S0043-1354(00)00134-2
39 Ter Braak C J F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology , 1986, 67(5): 1167-1179
doi: 10.2307/1938672
40 Liang Y, Li G, Van Nostrand J D, He Z, Wu L, Deng Y, Zhang X, Zhou J. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiology Ecology , 2009, 70(2): 324-333
doi: 10.1111/j.1574-6941.2009.00774.x pmid:19780823
41 Van Hamme J D, Singh A, Ward O P. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews , 2003, 67(4): 503-549
doi: 10.1128/MMBR.67.4.503-549.2003 pmid:1466567
[1] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[2] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[3] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[4] Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front. Environ. Sci. Eng., 2019, 13(2): 24-.
[5] Junqin PANG, Masami MATSUDA, Masashi KURODA, Daisuke INOUE, Kazunari SEI, Kei NISHIDA, Michihiko IKE. Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR[J]. Front. Environ. Sci. Eng., 2016, 10(4): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed