Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (4) : 492-502    https://doi.org/10.1007/s11783-012-0407-x
RESEARCH ARTICLE
Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes
Weiying LI1(), Xiuli SUN2, Chen WEN3, Hui LU2, Zhiwei WANG1
1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Yangtze Water Environment of Ministry of Education, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 3. School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China
 Download: PDF(544 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmission Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L·m-2·h-1, higher than that of unmodified PVDF membranes (155 L·m-2·h-1). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.

Keywords poly(vinylidene fluoride) (PVDF) membrane      nano-TiO2      anti-fouling performance      water treatment     
Corresponding Author(s): LI Weiying,Email:liweiying@tongji.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Weiying LI,Xiuli SUN,Chen WEN, et al. Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes[J]. Front Envir Sci Eng, 2013, 7(4): 492-502.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0407-x
https://academic.hep.com.cn/fese/EN/Y2013/V7/I4/492
Fig.1  The membrane evaluation device
Fig.2  TEM micrograph of TiO particles
samplespure water flux /( L·m-2·h-1)contact angle/°retention to BSA/%
PVDF15582.852.3
PVDF/TiO2-5%20365.962.6
PVDF/TiO2-10%23759.770.6
PVDF/TiO2-12%20661.660.8
Tab.1  The performance of the membranes.
samplesviscosity/(Pa·s)maximum loading/Nelongation at break/%porosity/%roughness/nm
PVDF19.513.024.163.3102.1
PVDF/TiO2-5%21.412.532.467.866.0
PVDF/TiO2-10%29.111.041.274.145.0
PVDF/TiO2-12%34.311.536.373.967.1
Tab.2  Properties of the membranes
Fig.3  Pore size distribution for different membranes
(a) PVDF; (b) PVDF/TiO-5%; (c) PVDF/TiO-10 %; (d) PVDF/TiO-12 %
Fig.4  Variation of permeate flux of PVDF membranes at different titanium dioxide loadings as a function of operating time
Fig.5  X-ray diffraction patterns of (a) TiO nanoparticles, (b) PVDF membrane and (c) PVDF/TiO -10% membrane
samplesC/%O/%N/%F/%Ti/%
PVDF61.524.652.0831.750
PVDF(after filtration)64.9322.829.652.600
PVDF/TiO2-10%59.645.171.7125.198.29
PVDF/TiO2-10%(after filtration)60.739.173.6820.346.08
Tab.3  Surface element contents for different membranes
Fig.6  XPS spectra for different membranes before and after the filtration of BSA.
a) PVDF, before filtration; (b) PVDF, after filtration; (c) PVDF/TiO-10 %, before filtration; (d) PVDF/TiO-10 %, after filtration
Fig.7  SEM micrographs of pure PVDF and TiO-incorporated hybrid membranes.
(a) Surface view of PVDF membrane; (b) surface view of PVDF/TiO-10 % membrane; (c) cross-sectional view of PVDF membrane; (d) cross-sectional view of PVDF/TiO-10 % membrane
Fig.8  Three-dimensional AFM images of the PVDF and PVDF/TiO hybrid membrane surfaces.
((a) and (b)) PVDF; ((c) and (d)) PVDF/TiO-5%; ((e) and (f)) PVDF/TiO-10 %: ((g) and(h)) PVDF/TiO-12 %
Fig.9  FTIR spectra of pure PVDF and TiO-incorporated hybrid membranes.
(a) PVDF; (b) PVDF/TiO-5%; (c) PVDF/TiO-10 %; (d) PVDF/TiO-12 %
1 Wu L, Sun J, Wang Q. Poly(vinylidene fluoride)/polyethersulfone blend membranes: effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology. Journal of Membrane Science , 2006, 285(1-2): 290-298
2 Wu L S, Sun J F, Wang Q R. Study progress of poly(vinylidene fluoride) membrane. Chinese Journal of Membrane Science and Technology , 2004, 24(5): 63-68 (in Chinese)
3 Du J R, Peldszus S, Huck P M, Feng X. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Research , 2009, 43(18): 4559-4568
doi: 10.1016/j.watres.2009.08.008 pmid:19716151
4 Du Q Y. Study on the preparation and application of PVDF hollow fiber membrane. Chinese Journal of Membrane Science and Technology , 2003, 23(4): 80-85 (in Chinese)
5 Zuo D Y, Xu Y Y, Zou H T. Research on two-steps formation mechanism of PVDF membrane by immersion precipitation. Chinese Journal of Membrane Science and Technology , 2009, 29(1): 29-35 (in Chinese)
6 Cao X, Ma J, Shi X, Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science , 2006, 253(4): 2003-2010
doi: 10.1016/j.apsusc.2006.03.090
7 Zhang Y Q, Zhang H L, Qu Y. Effects of addition of nano-SiO2 particles on polyvinylidene fluoride (PVDF) based membrane performance. Chinese Journal of Membrane Science and Technology , 2007, 27(6): 47-51 (in Chinese)
8 Zhao Y H, Qian Y L, Zhu B K, Xu Y Y. Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. Journal of Membrane Science , 2008, 310(1-2): 567-576
doi: 10.1016/j.memsci.2007.11.040
9 Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment. Water Research , 2007, 41(20): 4703-4709
doi: 10.1016/j.watres.2007.06.039 pmid:17643468
10 Di Vona M L, Marani D, D'Epifanio A, Traversa E, Trombetta M, Licoccia S. A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization. Polymer , 2005, 46(6): 1754-1758
doi: 10.1016/j.polymer.2004.12.033
11 Xue S, Yin G. Proton exchange membranes based on poly(vinylidene fluoride) and sulfonated poly(ether ether ketone). Polymer , 2006, 47(14): 5044-5049
doi: 10.1016/j.polymer.2006.03.086
12 Lu Y, Yu S L, Chai B X. Preparation of poly(vinylidene fluoride)(PVDF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer , 2005, 46(18): 7701-7706
doi: 10.1016/j.polymer.2005.05.155
13 Yu S L, Zuo X T, Bao R L, Xu X, Wang J, Xu J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer , 2009, 50(2): 553-559
doi: 10.1016/j.polymer.2008.11.012
14 Zhao P, Fan J. Electrospun nylon 6 fibrous membrane coated with rice-like TiO2 nanoparticles by an ultrasonic-assistance method. Journal of Membrane Science , 2010, 355(1-2): 91-97 .
doi: 10.1016/j.memsci.2010.03.011β
15 He P, Zhao A C. Nanometer composite technology and application in polymer modification. Polymer Bulletin , 2001, 2(1): 74-82 (in Chinese)
16 Khayet M, Villaluenga J P G, Valentin J L, Lepez-Manchado M A, Mengual J I, Seoane B. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer , 2005, 46(23): 9881-9891
doi: 10.1016/j.polymer.2005.07.081
17 Bottino A, Capannelli G, Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination , 2002, 146(1-3): 35-40
doi: 10.1016/S0011-9164(02)00469-1
18 Zhou H, Chen Y, Fan H, Shi H, Luo Z, Shi B. Water vapor permeability of the polyurethane/TiO2 nanohybrid membrane with temperature sensitivity. Journal of Applied Polymer Science , 2008, 109(5): 3002-3007
doi: 10.1002/app.28427
19 Vona M L D, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process. Journal of Membrane Science , 2007, 296(1-2): 156-161
doi: 10.1016/j.memsci.2007.03.037β
20 Yang Y, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membrane by sol–gel process. Polymer , 2006, 47(8): 2683-2688
doi: 10.1016/j.polymer.2006.01.019
21 Zuo D Y, Xu Y Y, Zhang Z. Preparation and performance researches on PVDF microporous flat membrane with the large pore diameter. Technology of Water Treatment , 2008, 34(6): 8-11 (in Chinese)
22 Fu X, Matsuyama H, Nagai H. Structure control of a symmetricpoly(vinyl butyral)-TiO2 composite membrane prepared by nonsolvent induced phase separation. Journal of Applied Polymer Science , 2008, 108(2): 713-723
doi: 10.1002/app.27711
23 Amjadi M, Rowshanzamir S, Peighambardoust S J, Hosseini M G, Eikani M H. Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy , 2010, 35(17): 9252-9260
doi: 10.1016/j.ijhydene.2010.01.005
24 Bae T H M, Tak T M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. Journal of Membrane Science , 2005, 249(1-2): 1-8
doi: 10.1016/j.memsci.2004.09.008
25 Ju X S, Huang P, Xu N P, Shi J. Study of factors influencing pore size of zirconia ultrafiltration membrane. Chinese Journal of Chemical Engineering , 2000, 14(2): 103-108 (in Chinese)
26 Yang D, Li J, Jiang Z, Lu L, Chen X. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chemical Engineering Science , 2009, 64(13): 3130-3137
doi: 10.1016/j.ces.2009.03.042
27 Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials , 2005, 17(21): 5255-5262
doi: 10.1021/cm0505244
28 Jiang H F, Ma Y X, Wang D, Gao C J. Preparation and characterization of polymer/TiO2 hybrid membrane. Functional Materials , 2008, 40(4): 591-594
29 Hu Q, Marand E, Dhingra S, Poly(amide-imide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. Journal of Membrane Science , 1997, 135(1): 65-79
30 Ren P, Zhang H, Zhang G F. Study on Crystal Phase in PVDF Melt Spun Fibre. Journal of Tianjin Polytechnic Univerisity , 2003, 22(4): 8-13 (in Chinese)
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[4] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[5] Yang Yang. Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 85-.
[6] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[7] Jianfeng Zhou, Ting Wang, Cecilia Yu, Xing Xie. Locally enhanced electric field treatment (LEEFT) for water disinfection[J]. Front. Environ. Sci. Eng., 2020, 14(5): 78-.
[8] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[9] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[10] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[11] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[12] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[13] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[14] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[15] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed