Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (6) : 884-891    https://doi.org/10.1007/s11783-012-0408-9
RESEARCH ARTICLE
Control of sludge settleability and nitrogen removal under low dissolved oxygen condition
Zhaoxu PENG1, Yongzhen PENG1,2(), Zhenbo YU1, Xuliang LIU1, Xiaoling LI1, Randeng WANG1
1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; 2. College of Environment and Energy Engineering, Beijing Institute of Technology, Beijing 100022, China
 Download: PDF(253 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Low dissolved oxygen (DO) is an energy-saving condition in activated sludge process. To investigate the possible application of limited filamentous bulking (LFB) in sequencing batch reactor (SBR), two lab-scale SBRs were used to treat synthetic domestic wastewater and real municipal wastewater, respectively. The results showed that prolonging low DO aeration duration and setting pre-anoxic (anaerobic) phase were effective strategies to induce and inhibit filamentous sludge bulking, respectively. According to the sludge settleability, LFB could be maintained steadily by adjusting operation patterns. Filamentous bacteria content and sludge volume index (SVI) were likely correlated. SVI fluctuated dramatically within a few cycles when around 200 mL·g-1, where altering operation pattern could change sludge settleability in spite of the unstable status of activated sludge system. Energy consumption by aeration reduced under low DO LFB condition, whereas the nitrification performance deteriorated. However, short-cut nitrification and simultaneous nitrification denitrification (SND) were prone to take place under such conditions. When the cycle time kept constant, the anoxic (anaerobic) to aerobic time ratio was determining factor to the SND efficiency. Similarity keeping aerobic time as constant, the variation trends of SND efficiency and specific SND rate were uniform. SBR is a promising reactor to apply the LFB process in practice.

Keywords limited filamentous bulking      sequencing batch reactor      sludge settleability      sludge volume index      simultaneous nitrification denitrification     
Corresponding Author(s): PENG Yongzhen,Email:pyz@bjut.edu.cn   
Issue Date: 01 December 2012
 Cite this article:   
Zhaoxu PENG,Yongzhen PENG,Zhenbo YU, et al. Control of sludge settleability and nitrogen removal under low dissolved oxygen condition[J]. Front Envir Sci Eng, 2012, 6(6): 884-891.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0408-9
https://academic.hep.com.cn/fese/EN/Y2012/V6/I6/884
Fig.1  Schematic diagram of experimental equipment
water quality indexmean value/(mg·L-1)
chemical oxygen demond (COD)326.9
NH4+-N43.7
PO43--P4.3
alkalinity (as CaCO3)400
Tab.1  Synthetic wastewater quality
water quality indexrange/(mg·L-1)mean value/(mg·L-1)
COD277.4-475.12318.4
NH4+-N31.1-69.550.1
NO2--N0-0.90.2
NO3--N0-1.20.3
PO43--P3.1-5.64.4
alkalinity(as CaCO3)272-443384
Tab.2  Municipal wastewater quality
experimental phasefeeding patternlimited aerationfeeding length/hOLR/ (kg COD·kg MLSS-1·d-1)anoxic length/haerobic length/hHRT/hSRT/dcycle number/ind
inhibition 1impulseno00.45-0.470.527.512.51-16
setup 1impulseno00.54-0.580261017-48
impulseno00.48-0.4902.57.512.549-56
inhibition 2impulseno00.42-0.500.527.512.557-128
setup 2impulseno00.40-0.4402.57.512.5129-148
inhibition 3impulseno00.42-0.500.527.512.5149-184
continousno0.50.42-0.430.527.512.5185-192
setup 3continousno0.50.43-0.4702.57.512.5193-209
inhibition 4continousno0.50.42-0.480.527.512.5210-272
Tab.3  Operation patterns for maintaining limited filamentous bulking treating synthetic wastewater
experimental phasefeeding patternlimited aerationfeeding length/hOLR/(kg COD·kg MLSS-1·d-1)anoxic length/haerobic length/hHRT/hSRT/dcycle number/ind
setup 1impulseno00.36-0.370.527.512.51-8
impulseno00.34-0.360.51.58109-24
inhibition 1impulseno00.26-0.300.52.01012.525-164
impulseno00.20-0.230.52.51215165-200
setup 2continousyes0.50.20-0.3002.51012.5201-251
continousno0.50.28-0.300.521012.5252-257
continousyes0.50.29-0.3002.51012.5258-260
inhibition 2continousno0.50.29-0.320.521012.5261-281
continousno0.50.37-0.4411.5810282-314
setup 3continousno0.50.29-0.310.521012.5315-329
inhibition 3continousno0.50.31-0.3911.51012.5330-365
setup 4continousno0.50.26-0.320.521012.5366-430
inhibition 4continousno0.50.33-0.3611.51012.5431-456
impulseno00.31-0.3711.51012.5457-520
Tab.4  Operation patterns for maintaining limited filamentous bulking treating real municipal wastewater
Fig.2  Variations of SVI and MLSS during the entire experiment.
(a) synthetic wastewater system; (b) municipal wastewater system
Fig.3  Morphology pictures of activated sludge around the filamentous bacteria content threshold value.
(a) SVI is lower than 200 mL·g; (b) SVI is higher than 200 mL·g
Fig.4  Nitrification performance during the entire experiment.
(a) synthetic wastewater system; (b) municipal wastewater system
Fig.5  SND performance during the entire experiment.
(a) synthetic wastewater system; (b) real municipal wastewater system
1 Martins A M P, Pagilla K, Heijnen J J, van Loosdrecht M C M. Filamentous bulking sludge—a critical review. Water Research , 2004, 38(4): 793-817
doi: 10.1016/j.watres.2003.11.005 pmid:14769404
2 Wang J B, Chai L H, Zhang Y, Chen L M. Microbial ecological model of filamentous bulking and mechanisms. World Journal of Microbiology & Biotechnology , 2006, 22(12): 1313-1320
doi: 10.1007/s11274-006-9178-5
3 Guo J H, Peng Y Z, Peng C Y, Wang S Y, Chen Y, Huang H J, Sun Z R. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen. Bioresource Technology , 2010, 101(4): 1120-1126
doi: 10.1016/j.biortech.2009.09.051 pmid:19837583
4 Smolders G J F, Meij J van der, Loosdrecht M C M van, HeijnenJ J. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnology and Bioengineering , 1994, 44(7): 837-848
doi: 10.1002/bit.260440709 pmid:18618851
5 APHA. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington D C: American Public Health Association, 1998
6 Eikelboom D H. Process Control of Activated Sludge Plants by Microscopic Investigation. London: IWA Publishing, 2000
7 Vaiopoulou E, Melidis P, Aivasidis A. Growth of filamentous bacteria in an enhanced biological phosphorus removal system. Desalination , 2007, 213(1-3): 288-296
doi: 10.1016/j.desal.2006.02.101
8 Eikelboom D H, Andreadakis A, Andreasen K. Survey of filamentous populations in nutrient removal plants in four European countries. Water Science and Technology , 1998, 37(4-5): 281-289
doi: 10.1016/S0273-1223(98)00120-6
9 Grau P, Da-Rin B P. Management of toxicity effects in a large wastewater treatment plant. Water Science and Technology , 1997, 36(2-3): 1-8
doi: 10.1016/S0273-1223(97)00397-1
10 Peng Y Z, Guo J H, Wang S Y, Chen Y. Energy saving achieved by limited filamentous bulking under low dissolved oxygen: derivation, originality and theoretical basis. Environmental Sciences , 2008, 29(12): 3342-3347 (in Chinese)
11 Tsang Y F, Chua H, Sin S N, Tam C Y. A novel technology for bulking control in biological wastewater treatment plant for pulp and paper making industry. Biochemical Engineering Journal , 2006, 32(3): 127-134
doi: 10.1016/j.bej.2006.08.014
12 Huang L, Ju L K. Sludge settling and online NAD(P)H fluorescence profiles in wastewater treatment bioreactors operated at low dissolved oxygen concentrations. Water Research , 2007, 41(9): 1877-1884
doi: 10.1016/j.watres.2007.01.040 pmid:17363027
13 Caravelli A, Giannuzzi L, Zaritzky N. Effect of chlorine on filamentous microorganisms present in activated sludge as evaluated by respirometry and INT-dehydrogenase activity. Water Research , 2004, 38(9): 2395-2404
doi: 10.1016/j.watres.2004.01.044 pmid:15142801
14 Agridiotis V, Forster C F, Carliell-Marquet C. Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics. Bioresource Technology , 2007, 98(15): 2926-2934
doi: 10.1016/j.biortech.2006.10.004 pmid:17113285
15 Ni B J, Yu H Q. Kinetic modeling microbial storage process in activated sludge under anoxic conditions. Chemical Engineering Science , 2008, 63(10): 2785-2792
doi: 10.1016/j.ces.2008.02.031
16 Jolis D, Mitch A A, Marneri M, Ho C F. Effects of anaerobic selector hydraulic retention time on biological foam control and enhanced biological phosphorus removal in a pure-oxygen activated sludge system. Water Environment Research , 2007, 79(5): 472-478
doi: 10.2175/106143006X115381 pmid:17571836
17 Martins A M P, Heijnen J J, van Loosdrecht M C M. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions. Water Research , 2003, 37(11): 2555-2570
doi: 10.1016/S0043-1354(03)00070-8 pmid:12753833
18 Schuler A J, Jassby D. Filament content threshold for activated sludge bulking: artifact or reality? Water Research , 2007, 41(19): 4349-4356
doi: 10.1016/j.watres.2007.06.021 pmid:17825872
19 Schuler A I, Jang H. Causes of variable biomass density and its effects on settleability in full-scale biological wastewater treatment systems. Environmental Science & Technology , 2007, 41(5): 1675-1681
doi: 10.1021/es0616074 pmid:17396659
20 Hu L L, Wang J L, Wen X H, Qian Y. Study on performance characteristics of SBR under limited dissolved oxygen. Process Biochemistry , 2005, 40(1): 293-296
doi: 10.1016/j.procbio.2004.01.015
21 Bernet N, Dangcong P, Delgenes J P, Moletta R. Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Engineering , 2001, 127(3): 266-271
doi: 10.1061/(ASCE)0733-9372(2001)127:3(266)
22 Guo J H, Peng Y Z, Wang S Y, Zheng Y N, Huang H J, Wang Z W. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technology , 2009, 100(11): 2796-2802
doi: 10.1016/j.biortech.2008.12.036 pmid:19201600
23 Dosta J, Galí A, Benabdallah El-Hadj T, Macé S, Mata-Alvarez J. Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite. Bioresource Technology , 2007, 98(11): 2065-2075
doi: 10.1016/j.biortech.2006.04.033 pmid:17292605
24 Ma Y, Peng Y Z, Wang S Y, Yuan Z G, Wang X L. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. Water Research , 2009, 43(3): 563-572
doi: 10.1016/j.watres.2008.08.025 pmid:19136135
25 Third K A, Burnett N, Cord-Ruwisch R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. Biotechnology and Bioengineering , 2003, 83(6): 706-720
doi: 10.1002/bit.10708 pmid:12889035
[1] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[2] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[3] Binbin WANG,Dangcong PENG,Xinyan ZHANG,Xiaochang WANG. Structure and formation of anoxic granular sludge —A string-bag hypothesis[J]. Front. Environ. Sci. Eng., 2016, 10(2): 311-318.
[4] Lin LIU,Qiyu YOU,Valerie GIBSON,Xu HUANG,Shaohua CHEN,Zhilong YE,Chaoxiang LIU. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1139-1148.
[5] Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN. Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature[J]. Front. Environ. Sci. Eng., 2014, 8(6): 937-944.
[6] Xinyan ZHANG, Binbin WANG, Qingqing HAN, Hongmei ZHAO, Dangcong PENG. Effects of shear force on formation and properties of anoxic granular sludge in SBR[J]. Front Envir Sci Eng, 2013, 7(6): 896-905.
[7] Xuguang TANG, Shuying WANG, Yongzhen PENG. Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment[J]. Front Envir Sci Eng Chin, 2010, 4(4): 475-481.
[8] Qing XIA , Rui LIANG , Yuning HONG , Lili DING , Hongqiang REN , Yuxiang MAO , Mingyu ZHAO , . Effects of La, Ce on nitrogen removal in sequencing batch reactor[J]. Front.Environ.Sci.Eng., 2009, 3(3): 369-374.
[9] LI Jun, NI Yongjiong, WEI Su, CHENG Guobiao, OU Changjin, PENG Yongzhen, GU Guowei, LU Jingen. On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencing batch reactor (SBR)[J]. Front.Environ.Sci.Eng., 2008, 2(1): 99-102.
[10] SUN Yujiao, WANG Yong, HUANG Xia. Relationship between sludge settleability and membrane fouling in a membrane bioreactor[J]. Front.Environ.Sci.Eng., 2007, 1(2): 221-225.
[11] YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying. Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor[J]. Front.Environ.Sci.Eng., 2007, 1(1): 23-27.
[12] ZENG Wei, PENG Yongzhen, WANG Shuying. Process evaluation of an alternating aerobic-anoxic process applied in a sequencing batch reactor for nitrogen removal[J]. Front.Environ.Sci.Eng., 2007, 1(1): 28-32.
[13] YANG Qing, WANG Shuying, YANG Anming, GUO Jianhua, BO Fengyang. Advanced nitrogen removal using pilot-scale SBR with intelligent control system built on three layer network[J]. Front.Environ.Sci.Eng., 2007, 1(1): 33-38.
[14] LIU Hong, YAN Yixin, WANG Wenyan, YU Yongyong. Low intensity ultrasound stimulates biological activity of aerobic activated sludge[J]. Front.Environ.Sci.Eng., 2007, 1(1): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed