Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 493-497    https://doi.org/10.1007/s11783-012-0416-9
RESEARCH ARTICLE
Biosorption of Cu(II) to extracellular polymeric substances (EPS) from Synechoeystis sp.: a fluorescence quenching study
Xiangliang PAN1(), Jing LIU2, Wenjuan SONG1, Daoyong ZHANG2
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; 2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
 Download: PDF(166 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biosorption of extracellular polymeric substances (EPS) from Synechocystis sp. (cyanobacterium) with Cu(II) was investigated using fluorescence spectroscopy. Three fluorescence peaks were found in the excitation-emission matrix (EEM) fluorescence spectra of EPS. Fluorescence of peak A (Ex/Em= 275/452 nm) and peak C (Ex/Em= 350/452 nm) were originated from humic-like substances and fluorescence of peak B (Ex/Em= 275/338 nm) was attributed to protein-like substances. Fluorescence of peaks A, B, and C could be quenched by Cu(II). The effective quenching constants (lg Ka) were 2.8–5.84 for peak A, 6.4–9.24 for peak B, and 3.48–6.68 for peak C, respectively. The values of lg Ka showed a decreasing trend with increasing temperature, indicating that the quenching processes were static in nature. The binding constants (lg Kb) followed the order of peak A>peak B>peak C, implying that the humic-like substances in EPS have greater Cu(II) binding capacity than the protein-like substances. The binding site number, n, in EPS-Cu(II) complexes for peaks A, B, and C was less than 1. This suggests the negative cooperativity between multiple binding sites and the presence of more than one Cu binding site.

Keywords biosorption      conditional binding constant      extracellular polymeric substances (EPS)      fluorescence quenching     
Corresponding Author(s): PAN Xiangliang,Email:panxl@ms.xjb.ac.cn   
Issue Date: 01 August 2012
 Cite this article:   
Xiangliang PAN,Jing LIU,Wenjuan SONG, et al. Biosorption of Cu(II) to extracellular polymeric substances (EPS) from Synechoeystis sp.: a fluorescence quenching study[J]. Front Envir Sci Eng, 2012, 6(4): 493-497.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0416-9
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/493
Fig.1  (a) EEM fluorescence spectra of sp. in absence Cu(II) at 298 K; and (b) EEM fluorescence spectra of sp. in presence of 0.0003 mol·L Cu(II) at 298 K
Fig.2  Variation of the fluorescence intensities of the peaks A, B, and C with increasing Cu(II) concentration
T/Kpeak Apeak Bpeak C
lg KaR2lg KaR2lg KaR2
2784.250.9974.360.9764.220.995
2883.920.9994.200.99140.999
2983.840.9974.210.9893.940.998
Tab.1  Calculated conditional stability constants of peaks A, B, and C at various temperatures
T/Kpeak Apeak Bpeak C
lg KbnR2lg KbnR2lg KbnR2
2782.420.6340.9971.750.460.9762.120.560.991
2882.930.7860.9952.180.590.9972.560.700.991
2982.850.7830.9902.250.590.9922.470.700.978
Tab.2  Binding constants (lg K) and binding site number () for EPS-Cu(II) system at various temperatures
1 Guibaud G, Bordas F, Saaid A, D’abzac P, van Hullebusch E. Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids and surfaces. B, Biointerfaces , 2008, 63(1): 48–54
doi: 10.1016/j.colsurfb.2007.11.002 pmid:18160270
2 Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. Journal of Hazardous Materials , 2008, 151(1): 185–193
doi: 10.1016/j.jhazmat.2007.05.070 pmid:17611021
3 Liu Y, Lam M C, Fang H H P. Adsorption of heavy metals by EPS of activated sludge. Water Science and Technology: a Journal of the International Association on Water Pollution Research , 2001, 43(6): 59–66
pmid:11381973
4 Bhaskar P V, Bhosle N B. Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environment International , 2006, 32(2): 191–198
doi: 10.1016/j.envint.2005.08.010 pmid:16256198
5 Zhang D Y, Wang J L, Pan X L. Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. Journal of Hazardous Materials , 2006, 138(3): 589–593
doi: 10.1016/j.jhazmat.2006.05.092 pmid:16839668
6 Zheng L, Ding AZ, Wang JS, Tian Y. Adsorption of Cd(II), Zn(II) by extracellular polymeric substances extracted from waste activated sludge. Water Science and Technology: a Journal of the International Association on Water Pollution Research , 2008, 58(1): 195–200
doi: 10.2166/wst.2008.646 pmid:18653954
7 Vinit-Dunand F, Epron D, Alaoui-Sosse B, Badot P. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science , 2002, 163(1): 53–58
doi: 10.1016/S0168-9452(02)00060-2
8 Yruela I. Copper in plants. Brazilian Journal of Plant Physiology , 2005, 17(1): 145–146
doi: 10.1590/S1677-04202005000100012
9 Acosta M P, Valdman E, Leite S G F, Battaglini F, Ruzal S M. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World Journal of Microbiology and Biotechnology , 2005, 21(6-7): 1157–1163
doi: 10.1007/s11274-005-0381-6
10 Zheng Y, Fang X L, Ye Z L, Li Y H, Cai W M. Biosorption of Cu(II) on extracellular polymers from Bacillus sp. F19. Journal of Environmental Sciences-China , 2008b, 20(11): 1288–1293
doi: 10.1016/S1001-0742(08)62223-8 pmid:19202866
11 Pérez J A M, García-Ribera R, Quesada T, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sa’nchez M. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World Journal of Microbiology & Biotechnology , 2008, 24(11): 2699–2704
doi: 10.1007/s11274-008-9800-9
12 Guibaud G, Tixier N, Bouju A, Baudu M. Use of a polarographic method to determine copper, nickel and zinc constants of complexation by extracellular polymers extracted from activated sludge. Process Biochemistry , 2004, 39(7): 833–839
doi: 10.1016/S0032-9592(03)00190-0
13 Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere , 2005, 59(5): 629–638
doi: 10.1016/j.chemosphere.2004.10.028 pmid:15792660
14 Guibaud G, van Hullebusch E, Bordas F. Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling. Chemosphere , 2006, 64(11): 1955–1962
doi: 10.1016/j.chemosphere.2006.01.012 pmid:16483634
15 Ni B J, Fang F, Xie W M, Sun M, Sheng G P, Li W H, Yu H Q. Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling. Water Research , 2009, 43(5): 1350–1358
doi: 10.1016/j.watres.2008.12.004 pmid:19215955
16 Chen W, Westerhoff P, Leenheer J A, Booksh K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology , 2003, 37(24): 5701–5710
doi: 10.1021/es034354c pmid:14717183
17 Sheng G P, Yu H Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research , 2006, 40(6): 1233–1239
doi: 10.1016/j.watres.2006.01.023 pmid:16513156
18 Wu F, Tanoue E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters. Environmental Science & Technology , 2001, 35(18): 3646–3652
doi: 10.1021/es0019023 pmid:11783640
19 Adav S S, Lee D J. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. Journal of Hazardous Materials , 2008, 154(1-3): 1120–1126
doi: 10.1016/j.jhazmat.2007.11.058 pmid:18162303
20 Rippka R, Deruelles J, Waterbury J B, Herdman M, Stanier R Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology , 1979, 111(1): 1–61
21 Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology , 2002, 95(3): 249–256
doi: 10.1016/S0168-1656(02)00025-1 pmid:12007865
22 Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound. Process Biochemistry , 2006, 41(4): 815–823
doi: 10.1016/j.procbio.2005.10.014
23 Ravat C, Dumonceau J, Monteil-Rivera F. Acid/base and Cu(II) binding properties of natural organic matter extracted from wheat bran: modeling by the surface complexation model. Water Research , 2000, 34(4): 1327–1339
doi: 10.1016/S0043-1354(99)00255-9
24 Esteves da Silva J C G, Machado A A S C, Oliveira C J S, Pinto M S. Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO(2)(2+). Talanta , 1998, 45(6): 1155–1165
doi: 10.1016/S0039-9140(97)00224-5 pmid:18967108
25 Lu X Q, Jaffe R. Interaction between Hg(II) and natural dissolved organic matter: a fluorescence spectroscopy based study. Water Research , 2001, 35(7): 1793–1803
doi: 10.1016/S0043-1354(00)00423-1 pmid:11329682
26 Papadopoulou A, Green R J, Frazier R A. Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. Journal of Agricultural and Food Chemistry , 2005, 53(1): 158–163
doi: 10.1021/jf048693g pmid:15631523
27 Chen C Y, Gu X T, Zhou J H. Binding studies of paeonolum with bovine serum albumin using spectroscopic methods. Spectroscopy , 2007, 21(1): 53–60
28 Lakowicz J R. Principles of Fluorescence Spectroscopy. 3rd ed. New York: Springer-Verlag, 2006
29 Hays M D, Ryan D K, Pennell S. A modified multisite Stern-Volmer equation for the determination of conditional stability constants and ligand concentrations of soil fulvic acid with metal ions. Analytical Chemistry , 2004, 76(3): 848–854
doi: 10.1021/ac0344135 pmid:14750884
30 Hill T L. Cooperativity: Theory in Biochemistry. New York: Springer-Verlag, 1985
[1] Yuan ZHANG,Yan ZHANG,Tao YU. Quantitative characterization of Cu binding potential of dissolved organic matter (DOM) in sediment from Taihu Lake using multiple techniques[J]. Front.Environ.Sci.Eng., 2014, 8(5): 666-674.
[2] Feng XUE, Beicheng XIA, Rongrong YING, Shili SHEN, Peng ZHAO. Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus[J]. Front Envir Sci Eng, 2013, 7(4): 531-538.
[3] Tao PAN, Suizhou REN, Jun GUO, Meiying XU, Guoping SUN. Biosorption and biotransformation of crystal violet by Aeromonas hydrophila DN322p[J]. Front Envir Sci Eng, 2013, 7(2): 185-190.
[4] Ling-Ling Wang, Shan Chen, Hai-Ting Zheng, Guo-Qing Sheng, Zhi-Jun Wang, Wen-Wei Li, Han-Qing Yu. A new polystyrene-latex-based and EPS-containing synthetic sludge[J]. Front Envir Sci Eng, 2012, 6(1): 131-139.
[5] Fengyu ZAN, Shouliang HUO, Beidou XI, Xiulan ZHAO. Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae[J]. Front Envir Sci Eng, 2012, 6(1): 51-58.
[6] Qian YAO, Hua ZHANG, Jun WU, Liming SHAO, Pinjing HE, . Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies[J]. Front.Environ.Sci.Eng., 2010, 4(3): 286-294.
[7] R. RAJESH KANNAN, M. RAJASIMMAN, N. RAJAMOHAN, B. SIVAPRAKASH, . Brown marine algae turbinaria conoides as biosorbent for Malachite green removal: Equilibrium and kinetic modeling[J]. Front.Environ.Sci.Eng., 2010, 4(1): 116-122.
[8] WANG Xuejiang, XIA Siqing, ZHAO Jianfu. Biosorption of Direct Black 38 by dried anaerobic granular sludge[J]. Front.Environ.Sci.Eng., 2008, 2(2): 198-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed