Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 445-454    https://doi.org/10.1007/s11783-012-0419-6
RESEARCH ARTICLE
Identification and ecotoxicity assessment of intermediates generated during the degradation of clofibric acid by advanced oxidation processes
Wenzhen LI1, Yu DING2, Qian SUI1, Shuguang LU1(), Zhaofu QIU1, Kuangfei LIN1
1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; 2. Datang Energy Corporation, Hulunbeier 021008, China
 Download: PDF(223 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this study was to identify the intermediates in clofibric acid degradation under various advanced oxidation processes, namely ultraviolet (UV), UV/H2O2, vacuum ultraviolet (VUV), VUV/H2O2, and solar/TiO2 processes, as well as to assess the toxicity of these intermediates. Eleven intermediates have been detected by gas chromatography-mass spectrometer, most of which were reported for the first time to our best knowledge. Combining the evolution of the dissolved organic carbon, Cl- and specific ultraviolet absorption at 254 nm, it could be deduced that cleavage of aromatic ring followed by dechlorination was the mechanism in solar/TiO2 process, while dechlorination happened first and accumulation of aromatic intermediates occurred in the other processes. Different transformation pathways were proposed for UV-, VUV-assisted and solar/TiO2 processes, respectively. The acute toxicity was evaluated by means of Photobacterium phosphoreum T3 spp. bioassay. It was believed that aromatic intermediates increased the toxicity and the ring-opening pathway in solar/TiO2 process could relieve the toxicity.

Keywords clofibric acid      advanced oxidation processes      intermediates      toxicity      Photobacterium phosphoreum T3 spp.     
Corresponding Author(s): LU Shuguang,Email:lvshuguang@ecust.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Wenzhen LI,Yu DING,Qian SUI, et al. Identification and ecotoxicity assessment of intermediates generated during the degradation of clofibric acid by advanced oxidation processes[J]. Front Envir Sci Eng, 2012, 6(4): 445-454.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0419-6
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/445
Fig.1  Degradation performance of clofibric acid in (a) UV and VUV, (b) UV/HO and VUV/HO, (c) solar/TiO processes ( = 100 mg·L, [HO]= 100 mg·L, [TiO]= 1000 mg·L, = 25°C)
Fig.2  (a) DOC mineralization, (b) Cl release and (c) SUVA evolution in UV, UV/HO, VUV, VUV/HO and solar/TiO processes (C = 100 mg L, [HO]= 100 mg L, [TiO]= 1000 mg L, = 25°C)
Fig.3  Possible degradation pathways of clofibric acid in (a) UV-, VUV-assisted and (b) solar/TiO processes (C = 100 mg L, [HO]= 100 mg L, [TiO]= 1000 mg L, = 25°C)
No.retention time /mincompoundformulamolecular weight /(g mol-1)structurem/z/(relative intensity,%)similarity/%
14.07methacrylic acidC4H6O28641(100), 86(73), 40(30), 69(18), 68(13), 42(10), 95(9), 45(7)94
24.57ethylbenzeneC8H1010691(100), 106(50), 65(12), 92(12), 51(11), 77(10), 78(9), 105(8)95
35.43p-benzoquinoneC6H4O2108108(100), 54(80), 82(37), 80(36), 52(21), 53(19), 50(8)98
46.28phenolC6H6O9494(100), 66(42), 65(29), 40(12), 95(8), 55(8), 63(7), 50(5)98
59.42acetic acid,4-chlorophenol esterC8H7ClO2170128(100), 130(32), 43(30), 168(26), 65(14), 41(11), 100(9), 170(8)87
69.72parachlorophenolC6H5ClO128128(100), 65(40), 130(35), 64(17), 100(16), 63(13), 129(8), 73(8)97
711.262-methyl-2,3-dihydrob-enzofuranC9H10O134134(100), 119(84), 91(37), 133(21), 65(20), 77(16), 51(12), 94(11)89
811.33hydroquinoneC6H6O2110110(100), 107(20), 82(11), 81(10), 108.95(7), 52.75(7), 110.9(7)78
912.655-chloro-2-methyl-2,3-dihydro-1-benzofuranC9H9ClO168168(100), 153(93), 125(62), 105(40), 170(32), 155(30), 77(25), 89(25)77
1012.892-methyl-5-hydroxybe-nzofuranC9H8O2148147(100), 148(93), 91(21), 65(16), 149(9), 74(7), 51(6), 63(6)90
1114.802,3-2H-benzofuran-5-ol-2-one, 3,3-dimethylC10H10O3178150(100), 135(87), 107(53), 178(51), 77(25), 79(19), 53(11), 51(10)86
1215.40clofibric acidC10H11ClO3214128(100), 130(32), 41(11), 129(10), 65(9), 75(8), 214(7), 100(5)95
Tab.1  Main photodegradation intermediates identified by GC-MS in UV, UV/HO, VUV, VUV/HO and solar/TiO processes
Fig.4  Toxicity assessment by inhibition of (T, spp.) for intermediates of clofibric acid oxidation in (a) UV and VUV, (b) UV/HO and VUV/HO (100 times dilution of samples) and (c) solar/TiO processes ( = 10 mg L, [HO] = 100 mg L, [TiO] = 1000 mg L, = 10°C)
1 Hallingsorensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützh?ft H C, J?rgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere , 1998, 36(2): 357-393
doi: 10.1016/S0045-6535(97)00354-8 pmid:9569937
2 Bound J P, Voulvoulis N. Pharmaceuticals in the aquatic environment—a comparison of risk assessment strategies. Chemosphere , 2004, 56(11): 1143-1155
doi: 10.1016/j.chemosphere.2004.05.010 pmid:15276728
3 Sanderson H, Johnson D J, Wilson C J, Brain R A, Solomon K R. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters , 2003, 144(3): 383-395
doi: 10.1016/S0378-4274(03)00257-1 pmid:12927355
4 Santos L H M L M, Araújo A N, Fachini A, Pena A, Delerue-Matos C, Montenegro M C. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials , 2010, 175(1-3): 45-95
doi: 10.1016/j.jhazmat.2009.10.100 pmid:19954887
5 Buser H R, Müller M D, Theobald N. Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea. Environmental Science & Technology , 1998, 32(1): 188-192
doi: 10.1021/es9705811
6 Heberer T, Schmidt-B?umler K, Stan H J. Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part 1. Drug residues and other polar contaminants in Berlin surface and groundwater. Acta Hydrochimica et Hydrobiologica , 1998, 26(5): 272-278
doi: 10.1002/(SICI)1521-401X(199809)26:5<272::AID-AHEH272>3.0.CO;2-O
7 Doll T E, Frimmel F H. Fate of pharmaceuticals—photodegradation by simulated solar UV-light. Chemosphere , 2003, 52(10): 1757-1769
doi: 10.1016/S0045-6535(03)00446-6 pmid:12871743
8 Andreozzi R, Raffaele M, Nicklas P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere , 2003, 50(10): 1319-1330
doi: 10.1016/S0045-6535(02)00769-5 pmid:12586163
9 Ferrari B, Paxéus N, Giudice R L, Pollio A, Garric J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety , 2003, 55(3): 359-370
doi: 10.1016/S0147-6513(02)00082-9 pmid:12798771
10 Emblidge J P, Delorenzo M E. Preliminary risk assessment of the lipid-regulating pharmaceutical clofibric acid, for three estuarine species. Environmental Research , 2006, 100(2): 216-226
doi: 10.1016/j.envres.2005.03.014 pmid:16442995
11 Lin A Y C, Yu T H, Lateef S K. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials , 2009, 167(1-3): 1163-1169
doi: 10.1016/j.jhazmat.2009.01.108 pmid:19269086
12 Flaherty C M, Dodson S I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere , 2005, 61(2): 200-207
doi: 10.1016/j.chemosphere.2005.02.016 pmid:16168743
13 Runnalls T J, Hala D N, Sumpter J P. Preliminary studies into the effects of the human pharmaceutical Clofibric acid on sperm parameters in adult Fathead minnow. Aquatic Toxicology (Amsterdam, Netherlands) , 2007, 84(1): 111-118
doi: 10.1016/j.aquatox.2007.06.005 pmid:17643504
14 Triebskorn R, Casper H, Scheil V, Schwaiger J. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Analytical and Bioanalytical Chemistry , 2007, 387(4): 1405-1416
doi: 10.1007/s00216-006-1033-x pmid:17216161
15 Kim J, Park J, Kim P G, Lee C, Choi K, Choi K. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna. Ecotoxicology (London, England) , 2010, 19(4): 662-669
doi: 10.1007/s10646-009-0440-0 pmid:19936919
16 Jung J Y, Kim Y H, Kim J, Jeong D H, Choi K. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna. Ecotoxicology (London, England) , 2008, 17(1): 37-45
doi: 10.1007/s10646-007-0174-9 pmid:17940867
17 Kim J, Park Y, Choi K. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation. Aquatic Toxicology (Amsterdam, Netherlands) , 2009, 91(1): 87-94
doi: 10.1016/j.aquatox.2008.10.006 pmid:19054584
18 Li W Z, Lu S G, Qiu Z F, Lin K F. Clofibric acid degradation in UV254/H2O2 process: effect of temperature. Journal of Hazardous Materials , 2010, 176(1-3): 1051-1057
doi: 10.1016/j.jhazmat.2009.11.147 pmid:20042284
19 Li W Z, Lu S G, Qiu Z F, Lin K F. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2 treatment for removal of clofibric acid from aqueous solution. Environmental Technology , 2011, 32(10): 1063-1071
doi: 10.1080/09593330.2010.525750 pmid:21882559
20 Li W Z, Lu S G, Qiu Z F, Lin K F. Photocatalysis of clofibric acid under solar light in summer and winter seasons. Industrial & Engineering Chemistry Research , 2011, 50(9): 5384-5393
doi: 10.1021/ie1017145
21 Nicole I, De Laat J, Dore M, Duguet J P, Bonnel C. Use of u.v. radiation in water treatment: measurement of photonic flux by hydrogen peroxide actinometry. Water Research , 1990, 24(2): 157-168
doi: 10.1016/0043-1354(90)90098-Q
22 Doll T E, Frimmel F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways. Water Research , 2004, 38(4): 955-964
doi: 10.1016/j.watres.2003.11.009 pmid:14769415
23 Sirés I, Arias C, Cabot P L, Centellas F, Garrido J A, Rodríguez R M, Brillas E. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere , 2007, 66(9): 1660-1669
doi: 10.1016/j.chemosphere.2006.07.039 pmid:1693834
24 Rosal R, Gonzalo M S, Boltes K, Letón P, Vaquero J J, García-Calvo E. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid. Journal of Hazardous Materials , 2009, 172(2-3): 1061-1068
doi: 10.1016/j.jhazmat.2009.07.110 pmid:19709806
25 Ai Z H, Yang P, Lu X H. Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. Journal of Hazardous Materials , 2005, 124(1-3): 147-152
doi: 10.1016/j.jhazmat.2005.04.027 pmid:15979787
26 Gaya U I, Abdullah A H, Zainal Z, Hussein M Z. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. Journal of Hazardous Materials , 2009, 168(1): 57-63
doi: 10.1016/j.jhazmat.2009.01.130 pmid:19268454
27 Gaya U I, Abdullah A H, Hussein M Z, Zainal Z. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO power. Desalination , 2010, 263(1-3): 176-182
doi: 10.1016/j.desal.2010.06.055
28 Zertal A, Sehili T, Boule P. Photochemical behaviour of 4-chloro-2-methylphenoxyacetic acid. Journal of Photochemistry and Photobiology A: Chemistry , 2001, 146(1-2): 37-48
doi: 10.1016/S1010-6030(01)00534-2
29 Salama T M, Ali I O, Mohamed M M. Synthesis and characterization of mordenites encapsulated titania nanopariticles: photocatalytic degradation of meta-chlorophenol. Journal of Molecular Catalysis A: Chemical , 2007, 273(1-2): 198-210
doi: 10.1016/j.molcata.2007.03.071
30 Kralik P, Kusic H, Koprivanac N, Loncaric Bozic A. Degradation of chlorinated hydrocarbons by UV/H2O2: the application of experimental design and kinetic modeling approach. Chemical Engineering Journal , 2010, 158(2): 154-166
doi: 10.1016/j.cej.2009.12.023
31 Zhang L F, Sawell S, Moralejo C, Anderson W A. Heterogeneous photocatalytic decomposition of gas-phase chlorobenzene. Applied Catalysis B: Environmental , 2007, 71(3-4): 135-142
doi: 10.1016/j.apcatb.2006.08.016
32 Andreozzi R, Canterino M, Giudice R L, Marotta R, Pinto G, Pollio A. Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Research , 2006, 40(3): 630-638
doi: 10.1016/j.watres.2005.11.023 pmid:16405942
33 Chaabane H, Vulliet E, Joux F, Lantoine F, Conan P, Cooper J F, Coste C M. Photodegradation of sulcotrione in various aquatic environments and toxicity of its photoproducts for some marine micro-organisms. Water Research , 2007, 41(8): 1781-1789
doi: 10.1016/j.watres.2007.01.009 pmid:17303209
34 Bonnemoy F, Lavédrine B, Boulkamh A. Influence of UV irradiation on the toxicity of phenylurea herbicides using Microtox? test. Chemosphere , 2004, 54(8): 1183-1187
doi: 10.1016/j.chemosphere.2003.10.027 pmid:14664847
35 Shang N C, Yu Y H, Ma H W, Chang C H, Liou M L. Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols. Journal of Environmental Management , 2006, 78(3): 216-222
doi: 10.1016/j.jenvman.2005.03.015 pmid:16122866
[1] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[2] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[3] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[4] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[5] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[6] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[7] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[8] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[9] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[10] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[11] Qian-Yuan Wu, Yi-Jun Yan, Yao Lu, Ye Du, Zi-Fan Liang, Hong-Ying Hu. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Front. Environ. Sci. Eng., 2020, 14(2): 25-.
[12] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[13] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[14] Virender K. Sharma, Xin Yu, Thomas J. McDonald, Chetan Jinadatha, Dionysios D. Dionysiou, Mingbao Feng. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 37-.
[15] Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou. Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor pre-treating trimethylolpropane wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(6): 12-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed