Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 484-492    https://doi.org/10.1007/s11783-012-0423-x
RESEARCH ARTICLE
Competitive adsorption and desorption of copper and lead in some soil of North China
Fengjie ZHANG1,2, Xiaoxia OU2, Shuo CHEN1(), Chunqiu RAN2, Xie QUAN1
1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; 2. College of Environment and Resources, Dalian Nationalities University, Dalian 116600, China
 Download: PDF(220 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The competitive adsorption and desorption of Pb(II) and Cu(II) ions in the soil of three sites in North China were investigated using single and binary metal solutions with 0.01 mol·L-1 CaCl2 as background electrolyte. The desorption isotherms of Pb(II) and Cu(II) were similar to the adsorption isotherms, which can be fitted well by Freundlich equation (R2>0.96). The soil in the three sites had greater sorption capacities for Pb(II) than Cu(II), which was affected strongly by the soil characteristics. In the binary metal solution containing 1∶1 molar ratio of Pb(II) and Cu(II), the total amount of Pb(II) and Cu(II) adsorption was affected by the simultaneous presence of the two metal ions, indicating the existence of adsorption competition between the two metal ions. Fourier transform infrared (FT-IR) spectroscopy was used to investigate the interaction between soil and metal ions, and the results revealed that the carboxyl and hydroxyl groups in the soil were the main binding sites of metal ions.

Keywords competitive adsorption      desorption      copper      lead      soil     
Corresponding Author(s): CHEN Shuo,Email:shuochen@dlut.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Fengjie ZHANG,Xiaoxia OU,Shuo CHEN, et al. Competitive adsorption and desorption of copper and lead in some soil of North China[J]. Front Envir Sci Eng, 2012, 6(4): 484-492.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0423-x
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/484
soilpHa)pHb)sand/%silt/%clay/%OC/%CEC/(cmol (+)·kg-1)Fed/(g·kg-1)Ald/(g·kg-1)
HB7.126.4839.844.315.93.143.525.710.77
PJ7.447.230.976.922.22.6810.315.600.44
DL7.677.0131.350.018.71.626.063.510.24
Tab.1  Properties of the three soil samples studied
Fig.1  Adsorption and desorption of Cu (●) and Pb (○) onto the three soil samples in single-component solution.((a) HB soil adsorption; (b) HB soil desorption; (c) PJ soil adsorption; (d) PJ soil desorption; (e) DL soil adsorption; (f) DL soil desorption)
soilmetaladsorptiondesorption
KF /(μmol1-n·Ln·kg-1)nR2KF/(μmol1-n·Ln·kg-1)nR2
HBCu18.75±0.920.22±0.011.0025.02±2.370.19±0.020.97
Pb37.46±1.290.30±0.011.0077.48±1.970.25±0.010.99
Cu(+Pb)10.40±0.290.17±0.011.0011.81±2.410.18±0.020.97
Pb(+Cu)12.86±1.680.19±0.030.9312.88±2.410.23±0.050.86
Cu-Pb18.62±1.990.19±0.020.9722.27±2.600.20±0.030.94
PJCu11.48±0.940.29±0.010.996.37±0.710.59±0.030.99
Pb49.01±1.570.16±0.011.0087.27±1.850.09±0.010.98
Cu(+Pb)27.96±1.680.10±0.010.9540.21±3.740.07±0.030.56
Pb(+Cu)27.58±2.660.12±0.020.9130.38±5.030.16±0.050.79
Cu-Pb50.59±1.740.11±0.010.9965.25±2.730.12±0.010.97
DLCu11.26±0.990.28±0.010.999.95±1.420.51±0.040.98
Pb18.73±1.700.22±0.020.9718.23±0.710.24±0.010.99
Cu(+Pb)10.85±0.400.18±0.010.9914.93±0.490.15±0.010.98
Pb(+Cu)11.35±1.090.19±0.030.9211.79±3.010.20±0.080.78
Cu-Pb19.27±1.480.19±0.020.9728.94±2.480.12±0.020.91
Tab.2  Freundlich coefficients for adsorption and desorption of Cu(II) and Pb(II) onto three soil in binary-component solution
Fig.2  Adsorption and desorption of Cu(+Pb) (●), Pb(+Cu) (○), and Cu-Pb (?)onto the three soil samples in binary-component solution.((a) HB soil adsorption; (b) HB soil desorption; (c) PJ soil adsorption; (d) PJ soil desorption; (e) DL soil adsorption; (f) DL soil desorption)
Fig.3  Comparison of amounts of adsorption (a) and desorption (b) ( and : 1260 μmol·L in single-component solution; : 630 μmol·L in 1∶1 molar ratio of the binary-component solution)
Fig.4  FT-IR spectra of PJ soil before and after the adsorption. (a: soil; b: soil+1260 μmol·L Pb; c: soil+1260 μmol·L Cu; d: soil+630 μmol·L Pb+630 μmol·L Cu)
1 Bhuiyan M A H, Parvez L, Islam M A, Dampare S B, Suzuki S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials , 2010, 173(1-3): 384–392
doi: 10.1016/j.jhazmat.2009.08.085 pmid:19744789
2 Thévenot D R, Moilleron R, Lestel L, Gromaire M C, Rocher V, Cambier P, Bonté P, Colin J L, de Pontevès C, Meybeck M. Critical budget of metal sources and pathways in the Seine River basin (1994-2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. The Science of the Total Environment , 2007, 375(1-3): 180–203
doi: 10.1016/j.scitotenv.2006.12.008 pmid:17267024
3 Jung M C. Contamination by Cd, Cu, Pb, and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea. Environmental Geochemistry and Health , 2008, 30(3): 205–217
doi: 10.1007/s10653-007-9109-x pmid:17687627
4 Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature , 1988, 333(6169): 134–139
doi: 10.1038/333134a0 pmid:3285219
5 Paulson A J. The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and SO4 in a groundwater plume and in downstream surface waters in the Coeur d'Alene Mining District, Idaho, U.S.A. Applied Geochemistry , 1997, 12(4): 447–464
doi: 10.1016/S0883-2927(97)00013-9
6 Chen K P, Jiao J J. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: a case study in Shenzhen, China. Environmental Pollution , 2008, 151(3): 576–584
doi: 10.1016/j.envpol.2007.04.004 pmid:17543432
7 Lu S G, Xu Q F. Competitive adsorption of Cd, Cu, Pb and Zn by different soils of Eastern China. Environmental Geology , 2009, 57(3): 685–693
doi: 10.1007/s00254-008-1347-4
8 Vasudevan D, Cooper E M, Van Exem O L. Sorption-desorption of ionogenic compounds at the mineral-water interface: study of metal oxide-rich soils and pure-phase minerals. Environmental Science & Technology , 2002, 36(3): 501–511
doi: 10.1021/es0109390 pmid:11871567
9 Vega F A, Covelo E F, Andrade M L. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid and Interface Science , 2006, 298(2): 582–592
doi: 10.1016/j.jcis.2006.01.012 pmid:16458917
10 Scheinost A C, Abend S, Pandya K I, Sparks D L. Kinetic controls on Cu and Pb sorption by ferrihydrite. Environmental Science & Technology , 2001, 35(6): 1090–1096
doi: 10.1021/es000107m pmid:11347919
11 Trivedi P, Axe L. Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. Environmental Science & Technology , 2001, 35(9): 1779–1784
doi: 10.1021/es001644+ pmid:11355192
12 Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science , 2005, 290(1): 28–38
doi: 10.1016/j.jcis.2005.04.036 pmid:15935360
13 Jalali M, Moharrami S. Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma , 2007, 140(1-2): 156–163
doi: 10.1016/j.geoderma.2007.03.016
14 Covelo E F, Vega F A, Andrade M L. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. selectivity sequences. Journal of Hazardous Materials , 2007, 147(3): 852–861
doi: 10.1016/j.jhazmat.2007.01.123 pmid:17346879
15 Serrano S, Garrido F, Campbell C G, García-González M T. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma , 2005, 124(1-2): 91–104
doi: 10.1016/j.geoderma.2004.04.002
16 Papageorgiou S K, Katsaros F K, Kouvelos E P, Kanellopoulos N K. Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. Journal of Hazardous Materials , 2009, 162(2-3): 1347–1354
pmid:18653278
17 Wang S B, Terdkiatburana T, Tadé M O. Single and co-adsorption of heavy metals and humic acid on fly ash. Separation and Purification Technology , 2008, 58(3): 353–358
doi: 10.1016/j.seppur.2007.05.009
18 El-Bayaa A A, Badawy N A, Alkhalik E A. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. Journal of Hazardous Materials , 2009, 170(2-3): 1204–1209
doi: 10.1016/j.jhazmat.2009.05.100 pmid:19524366
19 Vaughan T, Seo C W, Marshall W E. Removal of selected metal ions from aqueous solution using modified corncobs. Bioresource Technology , 2001, 78(2): 133–139
doi: 10.1016/S0960-8524(01)00007-4 pmid:11333031
20 Entezari M H, Soltani T. Simultaneous removal of copper and lead ions from a binary solution by sono-sorption process. Journal of Hazardous Materials , 2008, 160(1): 88–93
doi: 10.1016/j.jhazmat.2008.02.108 pmid:18423860
21 Mohapatra H, Gupta R. Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresource Technology , 2005, 96(12): 1387–1398
doi: 10.1016/j.biortech.2004.11.004 pmid:15792587
22 Mouni L, Merabet D, Robert D, Bouzaza A.Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ onto Amizour soil (Algeria). Geoderma , 2009, 154(1-2): 30–35
doi: 10.1016/j.geoderma.2009.09.007
23 Díaz-Barrientos E, Madrid L, Maqueda C, Morillo E, Ruiz-Cortés E, Basallote E, Carrillo M. Copper and zinc retention by an organically amended soil. Chemosphere , 2003, 50(7): 911–917
doi: 10.1016/S0045-6535(02)00695-1 pmid:12504129
24 Merdy P, Gharbi L T, Lucas Y. Pb, Cu and Cr interactions with soil: sorption experiments and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 347(1-3): 192–199
doi: 10.1016/j.colsurfa.2009.04.004
25 Pehlivan E, Ozkan A M, Din? S, Parlayici S. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. Journal of Hazardous Materials , 2009, 167(1-3): 1044–1049
doi: 10.1016/j.jhazmat.2009.01.096 pmid:19237240
26 Wang F, Pan G X, Li L Q. Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils. Journal of Environmental Sciences-China , 2009, 21(5): 618–624
doi: 10.1016/S1001-0742(08)62316-5 pmid:20108663
27 Usman R A. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma , 2008, 144(1-2): 334–343
doi: 10.1016/j.geoderma.2007.12.004
28 De Matos A T, Fontes M P F, da Costa L M, Martinez M A. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environmental pollution , 2001, 111(3): 429–435
doi: 10.1016/S0269-7491(00)00088-9 pmid:11202747
29 Lee S Z, Chang L Z, Yang H H, Chen C M, Liu M C. Adsorption characteristics of lead onto soils. Journal of Hazardous Materials , 1998, 63(1): 37–49
doi: 10.1016/S0304-3894(98)00203-9
30 Dyer J A, Trivedi P, Scrivner N C, Sparks D L. Lead sorpion onto ferrihydrite. 2. Surface complexation modeling. Environmental Science & Technology , 2003, 37(5): 915–922
doi: 10.1021/es025794r pmid:12666921
31 Viventsova Ruth E, Kumpiene J, Gunneriusson L, Holmgren A. Changes in soil organic matter composition and quantity with distance to a nickel smelter — a case study on the Kola Peninsula, NW Russia. Geoderma , 2005, 127(3-4): 216–226
doi: 10.1016/j.geoderma.2004.12.010
32 Futalan C M, Kan C C, Dalida M L, Hsien K J, Pascua C, Wan M W. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydrate Polymers , 2011, 83(2): 528–536
doi: 10.1016/j.carbpol.2010.08.013
33 Arias M, Pérez-Novo C, Osorio F, López E, Soto B. Adsorption and desorption of copper and zinc in the surface layer of acid soils. Journal of Colloid and Interface Science , 2005, 288(1): 21–29
doi: 10.1016/j.jcis.2005.02.053 pmid:15927557
34 Trivedi P, Axe L, Dyer J. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2001, 191(1-2): 107–121
doi: 10.1016/S0927-7757(01)00768-3
35 Arias M, Pérez-Novo C, López E, Soto B. Competitive adsorption and desorption of copper and zinc in acid soils. Geoderma , 2006, 133(3-4): 151–159
doi: 10.1016/j.geoderma.2005.07.002
36 Singh A, Kumar D, Gaur J P. Copper(II) and lead(II) sorption from aqueous solution by non-living Spirogyra neglecta. Bioresource Technology , 2007, 98(18): 3622–3629
doi: 10.1016/j.biortech.2006.11.041 pmid:17223556
37 Flogeac K, Guillon E, Aplincourt M. Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies. Geoderma , 2007, 139(1-2): 180–189
doi: 10.1016/j.geoderma.2007.01.016
38 Oh S, Kwak M Y, Shin W S. Competitive sorption of lead and cadmium onto sediments. Chemical Engineering Journal , 2009, 152(2-3): 376–388
doi: 10.1016/j.cej.2009.04.061
39 Ma L, Xu R K, Jiang J. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. Journal of Environmental Sciences-China , 2010, 22(5): 689–695
doi: 10.1016/S1001-0742(09)60164-9 pmid:20608504
40 Qiu W, Zheng Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal , 2009, 145(3) 483–488
doi: 10.1016/j.cej.2008.05.001
41 Arias M, Barral M T, Mejuto J C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere , 2002, 48(10): 1081–1088
doi: 10.1016/S0045-6535(02)00169-8 pmid:12227513
42 Sposito G. The Surface Chemistry of Soil. New York: Oxford University Press, 1984
43 Wan Y, Bao Y Y, Zhou Q X. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere , 2010, 80(7): 807–812
doi: 10.1016/j.chemosphere.2010.04.066 pmid:20510430
44 Lim S F, Zheng Y M, Zou S W, Chen J P. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environmental Science & Technology , 2008, 42(7): 2551–2556
doi: 10.1021/es7021889 pmid:18504995
45 Iqbal M, Saeed A, Zafar S I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials , 2009, 164(1): 161–171
doi: 10.1016/j.jhazmat.2008.07.141 pmid:18799258
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[3] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[4] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[5] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[6] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[7] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
[8] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[9] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[10] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[11] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[12] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[13] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[14] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[15] Mohsen Jalali, Ziba Hurseresht. Assessment of mobile and potential mobile trace elements extractability in calcareous soils using different extracting agents[J]. Front. Environ. Sci. Eng., 2020, 14(1): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed