Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 498-508    https://doi.org/10.1007/s11783-012-0429-4
RESEARCH ARTICLE
Immobilized Lentinus edodes residue as absorbent for the enhancement of cadmium adsorption performance
Pei MA1,2, Dan ZHANG3()
1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China
 Download: PDF(216 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To investigate the potential use of Lentinus edodes (L. edodes) residue for Cd2+ adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized L. edodes was 4–7 wider than that for raw L. edodes (pH 6–7). In the presence of Pb2+ concentration varying from 0 to 30 mg·L-1, the Cd2+ adsorption ratios declined by 6.71% and 47.45% for immobilized and raw L. edodes, respectively. While, with the coexisting ion Cu2+ concentration varied from 0 to 30 mg·L-1, the Cd2+ adsorption ratios declined by 12.97% and 50.56% for immobilized and raw L. edodes, respectively. The Cd2+ adsorption isotherms in single–metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin–Radushkevich models. The Cd2+ adsorption capacities (qm) in single-metal solution were 6.448 mg·L-1 and 2.832 mg·L-1 for immobilized and raw L. edodes, respectively. The qm of immobilized L. edodes were 1.850 mg Cd·g-1 in Cd2+ + Pb2+ solution and 3.961 mg Cd·g-1 in Cd2+ + Cu2+ solution, respectively. The Cd2+ adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of L. edodes was –OH, –NH, –CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA–SA-immobilized L. edodes was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.

Keywords immobilization      Lentinus edodes residue      competitive adsorption      isotherm     
Corresponding Author(s): ZHANG Dan,Email:daniezhang@imde.ac.cn   
Issue Date: 01 August 2012
 Cite this article:   
Pei MA,Dan ZHANG. Immobilized Lentinus edodes residue as absorbent for the enhancement of cadmium adsorption performance[J]. Front Envir Sci Eng, 2012, 6(4): 498-508.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0429-4
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/498
Fig.1  Effect of contact time on Cd adsorption with the raw and the PVA–SA-immobilized ( = 5 mg·L; biomass: 4 g·L of the raw . , 8 g·L of the immobilized . ; pH of 6; 25°C)
Fig.2  Effect of pH on Cd adsorption with the raw and the PVA–SA-immobilized ( = 5 mg·L; biomass: 4 g·L of the raw . , 8 g·L of the immobilized . ; contact time: 1 h for the raw , 7 h for the immobilized ; 25°C)
Fig.3  Effect of adsorbent dosage on the adsorption of Cd ( = 5 mg·L; contact time: 1 h for the raw , 7 h for the immobilized ; pH of 6; 25°C)
Fig.4  (a) Effect of the existence of Pb on Cd adsorption with the raw and the PVA-SA-immobilized ; (b) effect of the existence of Cu on Cd adsorption with the raw and the PVA-SA-immobilized (concentration of Cd 10 mg·L; biomass: 4 g·L of the raw . , 8 g·L of the immobilized . ; contact time: 1 h for the raw , 7 h for the immobilized ; pH of 6; 25°C)
Adsorbentsk2R2equation
raw L. edodes0.842 51.2530.999 8y= 0.5503x + 0.2287
PVA–SA-immobilized L. edodes0.206 10.2130.999 9y = 4.8526x + 110.54
Tab.1  Parameters of pseudo-second-order kinetic for metal adsorption
Fig.5  Adsorption isotherms of Cd in single-metal solution (biomass: 4 g·L of the raw , 8 g·L of the immobilized ; contact time: 1 h for the raw , 7 h for the immobilized ; pH of 6; 25°C)
Fig.6  (a) Adsorption isotherms of metal ions in Cd + Pb solution; (b) adsorption isotherms of metal ions in Cd + Cu solution (biomass: 4 g·L of the raw , 8 g·L of the immobilized ; the for Pb/Cu was 10 mg·L; contact time: 1 h for the raw , 7 h for immobilized ; pH of 6; 25°C)
adsorbentsLangmuir modelFreundlich modelD–R model
qm/(mg·g-1)b × 100R2knR2qm/(mg·g-1)βR2
raw L. edodes2.8323.1760.9390.3131.0310.9991.3046 × 10-60.675
immobilized L. edodes6.4485.9160.9980.4311.5100.9823.45810-60.806
Tab.2  Parameters of isotherm models for cadmium adsorption in single-metal solution
solutionsLangmuir modelFreundlich modelD–R model
qm/(mg·g-1)b × 100R2knR2qm/(mg·g-1)βR2
Cd2+ + Pb2+ solution7.6890.7110.34471.16831.33840.96211.84981 × 10-50.8124
Cd2+ + Cu2+ solution-0.00465-10.91090.36330.68511.17710.97253.96063 × 10-50.963
Tab.3  Parameters of isotherm models for cadmium adsorption in dual-metal solution on immobilized
Fig.7  (a) FTIR spectra of powder before and after adsorbing Cd; (b) FTIR spectra of PVA–SA-immobilized powder before and after adsorbing Cd
CadmiumleadcopperzincpH value
before treatment/(mg·L-1)0.021.110.030.067
after treatment/(mg·L-1)0.010.290.010.027
adsorption ratio/%52.3873.1166.769.35-
national standard/(mg·L-1)0.1001.0005.0002.000-
Tab.4  Water quality analysis of flotation wastewater from Huili zinc ore before and after treated by the PVA–SA-immobilized
1 ü?er A, Uyanik A ? F, Aygün ? F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology , 2006, 47(3): 113-118
doi: 10.1016/j.seppur.2005.06.012
2 Netzer A, Hughes D E. Adsorption of copper, lead and cobalt by activated carbon. Water Research , 1984, 18(8): 927-933
doi: 10.1016/0043-1354(84)90241-0
3 Karabulut S, Karabakan A, Denizli A, Yurum Y Y. Batch removal of copper(II) and zinc(II) from aqueous solutions with low-rank Turkish coals. Separation and Purification Technology , 2000, 18(3): 177-184
doi: 10.1016/S1383-5866(99)00067-2
4 Brown P A, Gill S A, Allen S J. Metal removal from wastewater using peat. Water Research , 2000, 34(16): 3907-3916
doi: 10.1016/S0043-1354(00)00152-4
5 Kandah M I. Zinc and cadmium adsorption on low-grade phosphate. Separation and Purification Technology , 2004, 35(1): 61-70
doi: 10.1016/S1383-5866(03)00131-X
6 Sternberg S P, Claussen K. Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology , 2003, 89(1): 41-48
doi: 10.1016/S0960-8524(03)00034-8 pmid:12676499
7 Bailey S E, Olin T J, Bricha R M, Adrian D D. A review of potentially low-cost sorbents for heavy metals. Water Research , 1999, 33(11): 2469-2479
doi: 10.1016/S0043-1354(98)00475-8
8 Romero-González M E, Williams C J, Gardiner P H E, Gurman S J, Habesh S. Spectroscopic studies of the biosorption of gold(III) by dealginated seaweed waste. Environmental Science & Technology , 2003, 37(18): 4163-4169
doi: 10.1021/es020176w pmid:14524449
9 Xu J M, Zhang P. Development of immobilized cells technology in the treatment of water containing heavy metals. Environmental Science and Management , 2005, 30(6): 84-85 (in Chinese)
10 Schiewer S, Balaria A. Biosorption of Pb2+ by original and protonated citrus peels: equilibrium, kinetics, and mechanism. Chemical Engineering Journal , 2009, 146(2): 211-219
doi: 10.1016/j.cej.2008.05.034
11 Aker S T, Gorgulu A, Anilan B, Kaynak Z, Aker T. Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: batch and dynamic flow studies. Journal of Hazardous Materials , 2009, 165(1/2/3): 126-133
12 Manning B A, Goldberg S. Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environmental Science & Technology , 1997, 31(7): 2005-2011
13 Ahluwalia S S, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology , 2007, 98(12): 2243-2257
doi: 10.1016/j.biortech.2005.12.006 pmid:16427277
14 Arica M Y, Bayramoglu G. Cr(VI) biosorption from aqueous solutions using raw and immobilized biomass of Lentinus sajor-caju: preparation and kinetic characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 253(1-3): 203-211
doi: 10.1016/j.colsurfa.2004.11.012
15 Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology , 2003, 32(1): 78-91
doi: 10.1016/S0141-0229(02)00245-4
16 Wang J L. Bio-immobilized technology and water pollution control. Beijing: Science Press, 2002
17 Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals , 2002, 15(4): 377-390
doi: 10.1023/A:1020238520948 pmid:12405533
18 de-Bashan L E, Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology , 2010, 101(6): 1611-1627
doi: 10.1016/j.biortech.2009.09.043 pmid:19931451
19 Sheng P X, Kin W H, Ting Y P, Chen J P. Biosorption of copper by immobilized marine algal biomass. Chemical Engineering Journal , 2008, 136(2-3): 156-163
doi: 10.1016/j.cej.2007.03.033
20 Khoo K M, Ting Y P. Biosorption of gold by immobilized fungal biomass. Biochemical Engineering Journal , 2001, 8(1): 51-59
doi: 10.1016/S1369-703X(00)00134-0 pmid:11356371
21 Robinson P K, Reeve J O, Goulding K H. Kinetics of phosphorus of phosphorus uptake by immobilized Chlorella. Biotechnology Letters , 1988, 10(1): 17-20
doi: 10.1007/BF01030017
22 Iqbal M, Edyveane R G J. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering , 2004, 17(2): 217-223
doi: 10.1016/j.mineng.2003.08.014
23 Bayramo?lu G, Bekta? S, Arica M Y. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials , 2003, 101(3): 285-300
doi: 10.1016/S0304-3894(03)00178-X pmid:12935760
24 Wilkinson S C, Goulding K H, Robinson P K. Mercury accumulation and volatilization in immobilized algal cell systems. Biotechnology Letters , 1989, 11(12): 861-864
doi: 10.1007/BF01026841
25 Gabriel J J, Baldrian P, Hladíková K, Háková M. Copper sorption by native and modified pellets of wood-rotting basidiomycetes. Letters in Applied Microbiology , 2001, 32(3): 194-198
doi: 10.1046/j.1472-765x.2001.00888.x pmid:11264752
26 Pan X L, Wang J L, Zhang D Y. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry (Barking, London, England) , 2005, 40(8): 2799-2803
doi: 10.1016/j.procbio.2004.12.007
27 Wang J H, Tong Z F, Zeng A G. The application of immobilized cell in synthesis of adenosine triphosphate. Bioresource Technology , 2004, 31(3): 141-145 (in Chinese)
28 Chen G Q, Zeng G M, Tang L, Du C, Jiang X Y, Huang G H, Liu H L, Shen G L. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology , 2008, 99(15): 7034-7040
doi: 10.1016/j.biortech.2008.01.020 pmid:18313919
29 Galli E, di Mario F, Lorenzoni P, Rapanà P, Angelini R. Copper biosorption by Auricularia polytricha. Letters in Applied Microbiology , 2003, 37(2): 133-137
doi: 10.1046/j.1472-765X.2003.01354.x pmid:12859655
30 Kappoor A, Viraraghavan T. Fungal biosorption an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology , 1995, 53(3): 195-206 org/10.1016/0960-8524(95)00072-M
31 Liang S, Guo X Y, Feng N C, Tian Q H. Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel. Colloids and Surfaces. B, Biointerfaces , 2009, 73(1): 10-14
doi: 10.1016/j.colsurfb.2009.04.021
32 Zhang D, Gao J W, Ma P. Effect of competitive interference on the metal ions biosorption by Auricularia polytricha mycelial. Ecology & Environment , 2008, 17(6): 1822-1827 (in Chinese)
33 Luna A S, Costa A L H, da Costa A C, Henriques C A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula. Bioresource Technology , 2010, 101(14): 5104-5111
doi: 10.1016/j.biortech.2010.01.138 pmid:20172715
34 ?engil I A, ?zacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials , 2009, 166(2-3): 1488-1494
doi: 10.1016/j.jhazmat.2008.12.071 pmid:19188018
35 ?zacar M, ?engil A, Türkmenler H. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal , 2008, 143(1-3): 32-42
doi: 10.1016/j.cej.2007.12.005
36 Ar?ca M Y, Ka?ar Y, Gen? ?. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology , 2001, 80(2): 121-129
doi: 10.1016/S0960-8524(01)00084-0 pmid:11563702
37 Aksu Z. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. bulgaris in a batch system: effect of temperature. Separation and Purification Technology , 2001, 21(3): 285-294
doi: 10.1016/S1383-5866(00)00212-4
38 Kargi F, Cikla S. Biosorption of zinc(II) ions onto powdered waste sludge (PWS): kinetics and isotherms. Enzyme and Microbial Technology , 2006, 38(5): 705-710
doi: 10.1016/j.enzmictec.2005.11.005
39 Padmavathy V, Dhingra S C. Kinetics of biosorption of cadmium on Baker’s yeast. Bioresource Technology , 2003, 89(3): 281-287
doi: 10.1016/S0960-8524(03)00067-1 pmid:12798119
40 Wang X S, Hu H Q, Wang J, Sun C. The equilibrium and dynamics of Cu2+ biosorption by Na-type mordenite. Science and Technology Review , 2006, 24(11): 31-36 (in Chinese)
41 El-Naas M H, Al-Rub F A, Marzouqi A. Effect of competitive interference on the biosorption of lead(II) by Chlorella vulgaris. Chemical Engineering and Processing: Process intensification , 2007, 46(12): 1391-1399
42 Guo P, Gao H L, Chen P J. The rule of the adsorption to Cd2+ by immobilized bacteria. Journal of Jilin University , 2007, 37(2): 375-379 (in Chinese)
43 Ferraz A L, Teixeira J A. The use of flocculating brewer’s yeast for Cr(III) and Pb(II) removal from residual wastewaters. Bioprocess Engineering , 1999, 21(5): 431-437
45 Anayurt T R A, Sari A, Yuzen M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal , 2009, 151(1-3): 255-261
46 Jia R, Pei M J, Shi Y, Huang R D, Xiao Y Z. Studies on adsorption of Cu2+ by the fungus Aspergillus sp. China Environmental Science , 2003, 23(3): 263-266 (in Chinese)
47 Israilides C, Kletsas D, Arapoglou D, Philippoussis A, Pratsinis H, Ebringerová A, Hríbalová V, Harding S E. In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomedicine , 2008, 15(6-7): 512-519
doi: 10.1016/j.phymed.2007.11.029
48 Kellner R, Mermet J M, Otto M, Widner H M. Analytical Chemistry. New York: Wiley-Vch, 1998, 824
49 Akar T, Tunali S, Kiran I. Botrytics cinera as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical Engineering Journal , 2005, 25(3): 227-235
50 Akar T, Tunali S. Biosorption performance of Botrytis cinerea fungal products for removal of Cd (II) and Cu(II) ions from aqueous solutions. Minerals Engineering , 2005, 18(11): 1099-1109
doi: 10.1016/j.mineng.2005.03.002
51 ?anli O, Ay N, I?iklan N. Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly(vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads. European Journal of Pharmarnaceutics , 2007, 65(2): 204-214
pmid:16996255
52 Zhang Y, Kogelnig D, Morgenbesser C, Stojanovic A, Jirsa F, Lichtscheidl-Schultz I, Krachler R, Li Y, Keppler B K. Preparation and characterization of immobilized [A336][MTBA] in PVA-alginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions. Journal of Hazardous Materials , 2011, 196: 201-209
doi: 10.1016/j.jhazmat.2011.09.018 pmid:21974850
53 Peng D B, Tian Y P. Isolation and composition analysis of a kind of extracts of antioxidant activity from Lentinus edodes. Food Research Development , 2008, 29(6): 89-63 (in Chinese)
[1] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[2] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[3] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
[4] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
[5] Liuyan WU,Lijuan JIA,Xiaohan LIU,Chao LONG. The prediction of adsorption isotherms of ester vapors on hypercrosslinked polymeric adsorbent[J]. Front. Environ. Sci. Eng., 2016, 10(3): 482-490.
[6] Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 784-792.
[7] Lei ZHENG,Wei WANG,Wei QIAO,Yunchun SHI,Xiao LIU. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization[J]. Front. Environ. Sci. Eng., 2015, 9(4): 642-648.
[8] Junxing YANG,Liqun WANG,Jumei LI,Dongpu WEI,Shibao CHEN,Qingjun GUO,Yibing MA. Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil[J]. Front. Environ. Sci. Eng., 2015, 9(3): 419-428.
[9] Lei YU,Chen TU,Yongming LUO. Fabrication, characterization and evaluation of mesoporous activated carbons from agricultural waste: Jerusalem artichoke stalk as an example[J]. Front. Environ. Sci. Eng., 2015, 9(2): 206-215.
[10] Yang ZHANG,Zifu LI,Ibrahim B MAHMOOD. Recovery of NH4+ by corn cob produced biochars and its potential application as soil conditioner[J]. Front. Environ. Sci. Eng., 2014, 8(6): 825-834.
[11] Feng XUE, Beicheng XIA, Rongrong YING, Shili SHEN, Peng ZHAO. Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus[J]. Front Envir Sci Eng, 2013, 7(4): 531-538.
[12] Zhenxing ZHONG, Jian XU, Yuan ZHANG, Lei LI, Changsheng GUO, Yan HE, Wenhong FAN, Beiping ZHANG. Adsorption of sulfonamides on lake sediments[J]. Front Envir Sci Eng, 2013, 7(4): 518-525.
[13] Yan MA, Naiyun GAO, Wenhai CHU, Cong LI. Removal of phenol by powdered activated carbon adsorption[J]. Front Envir Sci Eng, 2013, 7(2): 158-165.
[14] Fengjie ZHANG, Xiaoxia OU, Shuo CHEN, Chunqiu RAN, Xie QUAN. Competitive adsorption and desorption of copper and lead in some soil of North China[J]. Front Envir Sci Eng, 2012, 6(4): 484-492.
[15] Chunhua XU, Dandan CHENG, Baoyu GAO, Zhilei YIN, Qinyan YUE, Xian ZHAO. Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions[J]. Front Envir Sci Eng, 2012, 6(4): 455-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed