Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 588-594    https://doi.org/10.1007/s11783-012-0433-8
RESEARCH ARTICLE
Effects of design parameters on performance and cost analysis of combined ultraviolet-biofilter systems treating gaseous chlorobenzene based on mathematical modeling
Can WANG1(), Jinying XI2, Hongying HU2, Insun KANG2
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; 2. School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(190 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A conceptual mathematical model was used to evaluate the design parameters of a combined ultraviolet (UV)-biofilter system, and perform a cost analysis. Results showed that the UV light source strength and the gas residence times in the UV system (UVRT) and biofilter (EBRT) had positive effects on the overall chlorobenzene removal efficiency of the system. High ratio of UVRT to EBRT improved the removal efficiency, suggesting that the UV system has a greater effect on the overall performance of the system compared with the biofilter. Analysis of the capital and operating costs showed that the capital costs of the standalone biofilter system were much higher than those of the standalone UV system. However, the biofilter operating costs were lower than those of the UV system. The operating costs of the combined UV-biofilter system increased with increasing UVRT/EBRT ratio, whereas its capital costs decreased.

Keywords volatile organic compounds      ultraviolet (UV) photodegradation      biofilter      modeling      cost analysis     
Corresponding Author(s): WANG Can,Email:wangcan@tju.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Can WANG,Jinying XI,Hongying HU, et al. Effects of design parameters on performance and cost analysis of combined ultraviolet-biofilter systems treating gaseous chlorobenzene based on mathematical modeling[J]. Front Envir Sci Eng, 2012, 6(4): 588-594.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0433-8
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/588
1 Kan E, Deshusses M A. Modeling of a foamed emulsion bioreactor: II. model parametric sensitivity. Biotechnology and Bioengineering , 2009, 102(3): 708-713
doi: 10.1002/bit.22122 pmid:18949760
2 Kennes C, Veiga M C. Fungal biocatalysts in the biofiltration of VOC-polluted air. Journal of Biotechnology , 2004, 113(1-3): 305-319
doi: 10.1016/j.jbiotec.2004.04.037 pmid:15380663
3 Delhoménie M C, Heitz M. Elimination of chlorobenzene vapors from air in a compost-based biofilter. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2003, 78(5): 588-595
doi: 10.1002/jctb.822
4 Koh L H, Kuhn D C, Mohseni M, Allen D G. Utilizing ultraviolet photooxidation as a pre-treatment of volatile organic compounds upstream of a biological gas cleaning operation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2004, 79(6): 619-625
doi: 10.1002/jctb.1030
5 Moussavi G, Mohseni M. Using UV pretreatment to enhance biofiltration of mixtures of aromatic VOCs. Journal of Hazardous Materials , 2007, 144(1-2): 59-66
doi: 10.1016/j.jhazmat.2006.09.086 pmid:17084524
6 Jorio H, Bibeau L, Heitz M. Biofiltration of air contaminated by styrene: effect of nitrogen supply, gas flow rate and inlet concentration. Environmental Science & Technology , 2000, 34(9): 1764-1771
doi: 10.1021/es990911c
7 Jang J H, Hirai M, Shoda M. Enhancement of styrene removal efficiency in biofilter by mixed cultures of Pseudomonas sp. SR-5. Journal of Bioscience and Bioengineering , 2006, 102(1): 53-59
doi: 10.1263/jbb.102.53 pmid:16952837
8 Wang C, Xi J Y, Hu H Y, Yao Y. Advantages of combined UV photodegradation and biofiltration processes to treat gaseous chlorobenzene. Journal of Hazardous Materials , 2009, 171(1-3): 1120-1125
doi: 10.1016/j.jhazmat.2009.06.129 pmid:19616379
9 Wang C, Xi J Y, Hu H Y, Yao Y. Effects of UV pretreatment on microbial community structure and metabolic characteristics in a subsequent biofilter treating gaseous chlorobenzene. Bioresource Technology , 2009, 100(23): 5581-5587
doi: 10.1016/j.biortech.2009.05.074 pmid:19577463
10 Wang C, Xi J Y, Hu H Y, Kang I S. Modeling of a combined ultraviolet-biofilter system to treat gaseous chlorobenzene I: model development and parametric sensitivity. Journal of the Air & Waste Management Association , 2011, 61(3): 295-301 β
doi: 10.3155/1047-3289.61.3.295
11 Zilli M, Palazzi E, Sene L, Converti A, Del Borghi M. Toluene and styrene removal from air in biofilters. Process Biochemistry , 2001, 37(4): 423-429
doi: 10.1016/S0032-9592(01)00228-X
12 Gabaldon C, Soria V M, Martin M, Marzal P, Roja J M P, Hornos J A. Removal of TEX vapours from air in a peat biofilter: influence of inlet concentration and inlet load. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2006, 81(3): 322-328
doi: 10.1002/jctb.1398
13 Austin D K, Sandosham A, Ventola R J, Holmes J. Four cases studies: technical and economic feasibility of biofiltration as a technology for VOC and odor control. In: Proceedings of the 1995 Conference on Biofiltration (an Air Pollution Control Technology), Los Angeles . Los Angeles: UB/TIB Hannover Press, 1995, 295-302
14 Devinny J S, Deshusses M A, Webster T S. Biofiltration for Air Pollution Control. New York: Lewis Publishers. 1999, 174-175
15 Estrada J M, Kraakman N J R, Mu?oz R, Lebrero R. A comparative analysis of odour treatment technologies in wastewater treatment plants. Environmental Science & Technology , 2011, 45(3): 1100-1106
doi: 10.1021/es103478j pmid:21275373
[1] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[2] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
[3] Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin. Transport of bacterial cell (E. coli) from different recharge water resources in porous media during simulated artificial groundwater recharge[J]. Front. Environ. Sci. Eng., 2020, 14(4): 63-.
[4] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[5] Nan Zhao, Huu Hao Ngo, Yuyou Li, Xiaochang Wang, Lei Yang, Pengkang Jin, Guangxi Sun. A comprehensive simulation approach for pollutant bio-transformation in the gravity sewer[J]. Front. Environ. Sci. Eng., 2019, 13(4): 62-.
[6] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[7] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[8] Ruifen Liu, Elizabeth Fassman-Beck. Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions[J]. Front. Environ. Sci. Eng., 2017, 11(4): 10-.
[9] Kajetan Kalus, Sebastian Opaliński, Devin Maurer, Somchai Rice, Jacek A. Koziel, Mariusz Korczyński, Zbigniew Dobrzański, Roman Kołacz, Beata Gutarowska. Odour reducing microbial-mineral additive for poultry manure treatment[J]. Front. Environ. Sci. Eng., 2017, 11(3): 7-.
[10] Yang Liu, Martina G. Vijver, Bo Pan, Willie J. G. M. Peijnenburg. Toxicity models of metal mixtures established on the basis of “additivity” and “interactions”[J]. Front. Environ. Sci. Eng., 2017, 11(2): 10-.
[11] Xiuhong Liu, Hongchen Wang, Qing Yang, Jianmin Li, Yuankai Zhang, Yongzhen Peng. Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale application[J]. Front. Environ. Sci. Eng., 2017, 11(1): 4-.
[12] Cesunica E. Ivey, Heather A. Holmes, Yongtao Hu, James A. Mulholland, Armistead G. Russell. A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter[J]. Front. Environ. Sci. Eng., 2016, 10(5): 14-.
[13] Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
[14] Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 73-84.
[15] Yue HUANG,Xin DONG,Siyu ZENG,Jining CHEN. An integrated model for structure optimization and technology screening of urban wastewater systems[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1036-1048.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed