Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (6) : 778-783    https://doi.org/10.1007/s11783-012-0434-7
RESEARCH ARTICL
Abiotic association of phthalic acid esters with humic acid of a sludge landfill
Xiaoli CHAI1(), Yongxia HAO1, Xin ZHAO1, Guixiang LIU1, Ying ZHU2, Rong JI3, Jun WU3, Huanhuan TONG1, Youcai ZHAO1
1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; 2. The Academy of Science of Shandong Province, Jinan 250013, China; 3. State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093, China
 Download: PDF(123 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The abiotic association between phthalic acid esters (PAEs) and humic substances (HS) in sludge landfill plays an important role in the fate and stability of PAEs. An equilibrium dialysis combined with 14C-labeling was used to study the abiotic association of two abundant PAEs (diethyl phthalate and di-n-butyl phthalate) with humic acid (HA) isolated from a sludge landfill with different stabilization times and different molecular weights. Elemental analysis and Fourier Transform Infrared Spectrophotometer (FTIR) suggested that high KA value of HA was related to the high aromatic content and large molecular weight of HA. The results indicated that the association strength of PAEs with HA depended on both the properties of the PAEs and the characteristics of HA. The KA values of the association were strongly dependent on solution pH, and decreased dramatically as the pH was increased from 3.0 to 9.0. The results suggested that non-specific hydrophobic interaction between PAEs and HA was the main contributor to the association of the PAEs with HA. The interactive hydrogen-bonds between the HA and the PAEs molecules may also be involved in the association.

Keywords abiotic association      phthalic acid esters (PAEs)      humic acid      sludge      landfill     
Corresponding Author(s): CHAI Xiaoli,Email:xlchai@tongji.edu.cn   
Issue Date: 01 December 2012
 Cite this article:   
Xiaoli CHAI,Yongxia HAO,Xin ZHAO, et al. Abiotic association of phthalic acid esters with humic acid of a sludge landfill[J]. Front Envir Sci Eng, 2012, 6(6): 778-783.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0434-7
https://academic.hep.com.cn/fese/EN/Y2012/V6/I6/778
Parametervalue
water content/%83.27-88.6
pH7.24-7.52
organic content/%>15
total nitrogen/%4.7
Tab.1  Characteristics of the sludge from Bai Long Gang Wastewater Treatment Plant
Fig.1  Fourier-transformed infrared spectra of HA
HAN/%C/%H/%O/%C/NO/CH/C
Haa)10.3351.947.3330.405.880.441.69
Hb10.2252.057.2930.445.880.441.68
Hc10.1453.357.3629.156.250.411.66
Tab.2  Elemental composition and rations of the HA
humic substancesassociation intensity(lg KA)
pH=3pH=7pH=9
Ha---
Hb3.00±0.042.74±0.022.10±0.02
Hc3.12±0.032.93±0.012.53±0.02
Tab.3  Association intensity (lg ) of C-labeled DBP (60 μg·L) with humic substances (0.1-1 mg·mL) at various pH values
Hb molecular weightassociation intensity(lg KA)
pH=3pH=7pH=9
10000 dalton3.05±0.032.96±0.012.53±0.02
1000 dalton3.00±0.042.74±0.022.10±0.02
Tab.4  Association intensity (lg ) of C-labeled DBP (60 μg·L) with Hb of different molecular weight
1 Yuan S Y, Liu C, Liao C S, Chang B V. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere , 2002, 49(10): 1295-1299
doi: 10.1016/S0045-6535(02)00495-2 pmid:12489726
2 Alatriste-Mondragon F, Iranpour R, Ahring B K. Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge. Water Research , 2003, 37(6): 1260-1269
doi: 10.1016/S0043-1354(02)00387-1 pmid:12598190
3 Teil M J, Blanchard M, Chevreuil M. Atmospheric fate of phthalate esters in an urban area (Paris-France). The Science of the Total Environment , 2006, 354(2-3): 212-223
doi: 10.1016/j.scitotenv.2004.12.083 pmid:16398997
4 Zhu J, Phillips S P, Feng Y L, Yang X. Phthalate esters in human milk: concentration variations over a 6-month postpartum time. Environmental Science & Technology , 2006, 40(17): 5276-5281
doi: 10.1021/es060356w pmid:16999099
5 Bauer M J, Herrmann R. Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. The Science of the Total Environment , 1997, 208(1-2): 49-57
doi: 10.1016/S0048-9697(97)00272-6 pmid:9496648
6 Liu H, Liang Y, Zhang D, Wang C, Liang H C, Cai H S. Impact of MSW landfill on the environmental contamination of phthalate esters. Waste Management (New York, N.Y.) , 2010, 30(8-9): 1569-1576
doi: 10.1016/j.wasman.2010.01.040 pmid:20202809
7 Wang J L, Liu P, Qian Y. Biodegradation of phthalate acid ester by acclimated activated sludge. Environment International , 1996, 22(6): 737-741
doi: 10.1016/S0160-4120(96)00065-7
8 Stales C A, Peterson D R, Parkerton T F, Adams W J. The environmental fate of phthalate esters: a literature review. Chemosphere , 1997, 35(4): 667-749
doi: 10.1016/S0045-6535(97)00195-1
9 Zeng F, Cui K, Xie Z, Wu L, Luo D, Chen L, Lin Y, Liu M, Sun G. Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China. Journal of Hazardous Materials , 2009, 164(2-3): 1171-1178
doi: 10.1016/j.jhazmat.2008.09.029 pmid:18963455
10 Cai Q Y, Mo C H, Wu Q T, Zeng Q Y. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application. Bioresource Technology , 2008, 99(6): 1830-1836
doi: 10.1016/j.biortech.2007.03.035 pmid:17502135
11 Haitzer M, Hoss S, Traunspurger W, Steinberg C. Relationship between concentration of dissolved organic matter (DOM) and the effect of DOM on the bioconcentration of benzo[a]-pyrene. Aquatic Toxicology (Amsterdam, Netherlands) , 1999, 45(2-3): 147-158
doi: 10.1016/S0166-445X(98)00097-6
12 Cho H H, Park J W, Liu C C K. Effect of molecular structures on the solubility enhancement of hydrophobic organic compounds by environmental amphiphiles. Environmental Toxicology and Chemistry /SETAC , 2002, 21(5): 999-1003
doi: 10.1002/etc.5620210515 pmid:12013147
13 Müller M B, Fritz W, Lankes U, Frimmel F H. Ultrafiltration of nonionic surfactants and dissolved organic matter. Environmental Science & Technology , 2004, 38(4): 1124-1132
doi: 10.1021/es0300416 pmid:14998027
14 Clapp C E, Mingelgrin U, Liu R, Zhang H, Hayes M H B. A quantitative estimation of the complexation of small organic molecules with soluble humic acids. Journal of Environmental Quality , 1997, 26(5): 1277-1281
doi: 10.2134/jeq1997.00472425002600050012x
15 Vinken R, Schaffer A, Ji R. Abiotic association of soil-borne monomeric phenols with humic acids. Organic Geochemistry , 2005, 36(4): 583-593
16 Chai X L, Shimaoka T, Guo Q, Zhao Y C. Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13C CP/MAS NMR and TMAH-Py-GC/MS. Waste Management , 2008, 28(5): 896-903
pmid:17376666
17 Lu X Q, Hanna J V, Johnson W D. Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS Study. Applied Geochemistry , 2000, 15(7): 1019-1033
doi: 10.1016/S0883-2927(99)00103-1
18 Polak J, Su?kowski W W, Bartoszek M, Papiez W. Spectroscopic studies of the progress of humification processes in humic acid extracted from sewage sludge. Journal of Molecular Structure , 2005, 744-747: 983-989
doi: 10.1016/j.molstruc.2004.12.054
19 Gauthier T D, Shane E C, Guerin W F, Seitz W R, Grant C L. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environmental Science & Technology , 1986, 20(11): 1162-1166
doi: 10.1021/es00153a012
20 Enfield C G, Bengtsson G, Lindqvist R. Influence of macromolecules on chemical transport. Environmental Science & Technology , 1989, 23(10): 1278-1286
doi: 10.1021/es00068a015
21 Kopinke F D, Poerschmann J, Stottmeister U. Sorption of organic pollutants on anthropogenic humic matter. Environmental Science & Technology , 1995, 29(4): 941-950
doi: 10.1021/es00004a014 pmid:22176401
22 Zhu D Q, Hyun S, Pignatello J J, Lee L S. Evidence for π-π electron donor-acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption. Environmental Science & Technology , 2004, 38(16): 4361-4368
doi: 10.1021/es035379e pmid:15382865
23 Chin Y P, Aiken G R, Danielsen K M. Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environmental Science & Technology , 1997, 31(6): 1630-1635
doi: 10.1021/es960404k
[1] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[2] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[3] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[4] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[5] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[6] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[7] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[8] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[9] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[10] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[11] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[12] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[13] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[14] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[15] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed