Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (6) : 892-900    https://doi.org/10.1007/s11783-012-0440-9
RESEARCH ARTICLE
Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation
Wei LI(), Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU
Key Laboratory of Regional Energy Systems Optimization (Ministry of Education), S-C Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206, China
 Download: PDF(193 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chemical precipitation is a useful technology as a pretreatment to treat mature landfill leachate with high concentrations of ammonium-nitrogen (NH4+-N) and refractory organic compounds. Orthogonal experiments and factorial experiments were carried out to determine the optimal conditions enhancing the magnesium ammonium phosphate (MAP) precipitation process, and the experimental results demonstrated that the removal rate of NH4+-N was more than 85% when MgO and NaH2PO4·2H2O were applied as external sources of magnesium and phosphorous under the optimal conditions that molar ratio n(Mg)∶n(N)∶n(P) = 1.4∶1∶0.8, reaction time 60 min, original pH of leachate and settling time 30 min. In the precipitation process, pH could be maintained at the optimal range of 8–9.5 because MgO could release hydroxide ions to consume hydrogen ions. Calcium ions and carbonate ions existed in the leachate could affect the precipitation process, which resulted in the decrease of NH4+-N removal efficiency. The residues of MAP sediments decomposed by heating under alkaline conditions can be reused as the sources of phosphorous and magnesium for the removal of high concentrations of NH4+-N, and up to 90% of ammonium could be released under molar ratio of n[OH]∶n[MAP] = 2.5∶1, heating temperature 90°C and heating time 2h.

Keywords magnesium ammonium phosphate precipitation      mature landfill leachate      optimization      ammonium-nitrogen     
Corresponding Author(s): LI Wei,Email:weili819@yahoo.com.cn   
Issue Date: 01 December 2012
 Cite this article:   
Wei LI,Xiaowen DING,Min LIU, et al. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation[J]. Front Envir Sci Eng, 2012, 6(6): 892-900.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0440-9
https://academic.hep.com.cn/fese/EN/Y2012/V6/I6/892
levelreaction time/minn(Mg)∶n(N)n(P)∶n(N)pH
1300.80.87
2601.01.08
31201.11.19
41801.31.310
Tab.1  Factors levels of orthogonal experiments
Fig.1  Impacts of various factors on the removal rate
Fig.2  removal rate and residual concentrations of and under different molar ratios of n(Mg)∶n(N)
Fig.3  removal rate and weight of sediments under different molar ratios of n(Mg)∶n(N)
Fig.4  removal rate and residual concentration under different pH values
Fig.5  Ratio of free ammonia (FA) under different pH values in 30°C
Fig.6  removal rate and residual concentration under different ratios of n(P)∶n(N)
Fig.7  removal rate and pH under different reaction time
Fig.8  Comparisons of removal rate and sediments weight between synthetic water and landfill leachate
Fig.9  release rate under different molar ratios of n[OH]∶n[MAP]
1 Zhang T, Ding L L, Ren H Q. Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials , 2009, 166(2-3): 911–915
doi: 10.1016/j.jhazmat.2008.11.101 pmid:19135791
2 Di Iaconi C, Pagano M, Ramadori R, Lopez A. Nitrogen recovery from a stabilized municipal landfill leachate. Bioresource Technology , 2010, 101(6): 1732–1736
doi: 10.1016/j.biortech.2009.10.013 pmid:19896841
3 Zhang T, Ding L L, Ren H Q, Xiong X. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Research , 2009, 43(20): 5209–5215
doi: 10.1016/j.watres.2009.08.054 pmid:19850316
4 Ozturk I, Altinbas M, Koyuncu I, Arikan O, Gomec-Yangin C. Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Management (New York, N.Y.) , 2003, 23(5): 441–446
doi: 10.1016/S0956-053X(03)00061-8 pmid:12893017
5 Altinba? M, Yangin C, Ozturk I. Struvite precipitation from anaerobically treated municipal and landfill wastewaters. Water Science and Technology , 2002, 46(9): 271–278
pmid:12448478
6 Li X Z, Zhao Q L. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment. Chemosphere , 2001, 44(1): 37–43
doi: 10.1016/S0045-6535(00)00382-9 pmid:11419757
7 Li X Z, Zhao Q L, Hao X D. Ammonium removal from land?ll leachate by chemical precipitation. Waste Management (New York, N.Y.) , 1999, 19(6): 409–415
doi: 10.1016/S0956-053X(99)00148-8
8 Stratful I, Scrimshaw M D, Lester J N. Conditions influencing the precipitation of magnesium ammonium phosphate. Water Research , 2001, 35(17): 4191–4199
doi: 10.1016/S0043-1354(01)00143-9 pmid:11791849
9 Gunay A, Karadag D, Tosun I, Ozturk M. Use of magnesit as a magnesium source for ammonium removal from leachate. Journal of Hazardous Materials , 2008, 156(1-3): 619–623
doi: 10.1016/j.jhazmat.2007.12.067 pmid:18243541
10 Li X Z, Zhao Q L. Recovery of ammonium-nitrogen from land?ll leachate as a multi-nutrient fertilizer. Ecological Engineering , 2003, 20(2): 171–181
doi: 10.1016/S0925-8574(03)00012-0
11 Chen T H, Huang X M, Pan M, Jin S, Peng S C, Fallgren P H. Treatment of coking wastewater by using manganese and magnesium ores. Journal of Hazardous Materials , 2009, 168(2-3): 843–847
doi: 10.1016/j.jhazmat.2009.02.101 pmid:19297089
12 Tünay O, Kabdasli I, Orhon D, Kolcak S. Ammonia removal by magnesium ammonium phosphate in industrial wastewater. Water Science and Technology , 1997, 36(2-3): 225–228
doi: 10.1016/S0273-1223(97)00391-0
13 Zdybiewska M W, Kula B. Removal of ammonia nitrogen by the precipitation method on the example of the some selected waste waters. Water Science and Technology , 1991, 24(7): 229–234
14 Nelson N O, Mikkelsen R L, Hesterberg D L. Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg︰P ratio and determination of rate constant. Bioresource Technology , 2003, 89(3): 229–236
doi: 10.1016/S0960-8524(03)00076-2 pmid:12798112
15 The State Environmental Protection Administration of China (SEPA). Monitoring and Analytical Methods of Water and Wastewater , 4th ed. Beijing: China Environmental Science Press, 2002 (in Chinese)
16 Hu H W. The influential analysis on the treatment of high concentration ammonia by MAP. Environmental Science and Management , 2008, 33(1): 118–120 (in Chinese)
17 Warmadewanthi, Liu J C. Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and Purification Technology , 2009, 64(3): 368–373
doi: 10.1016/j.seppur.2008.10.040
18 Yetilmezsoy K, Sapci-Zengin Z. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials , 2009, 166(1): 260–269
doi: 10.1016/j.jhazmat.2008.11.025 pmid:19097699
19 Parsons S A, Wall F, Doyle J, Oldring K, Churchley J. Assesing the potential for struvite recovery at sewage treatment works. Environmental Technology , 2001, 22(11): 1279–1286
doi: 10.1080/09593332208618188 pmid:11804349
20 Ryu H D, Kim D, Lee S I. Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater. Journal of Hazardous Materials , 2008, 156(1-3): 163–169
doi: 10.1016/j.jhazmat.2007.12.010 pmid:18206300
21 Chimenos J M, Fernández A I, Villalba G, Segarra M, Urruticoechea A, Artaza B, Espiell F. Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-containing by-product. Water Research , 2003, 37(7): 1601–1607
doi: 10.1016/S0043-1354(02)00526-2 pmid:12600388
22 Song Y H, Yuan P, Zheng B H, Peng J, Yuan F, Gao Y. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere , 2007, 69(2): 319–324
doi: 10.1016/j.chemosphere.2007.06.001 pmid:17619051
23 He S L, Zhang Y, Yang M, Du W, Harada H. Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate. Chemosphere , 2007, 66(11): 2233–2238
doi: 10.1016/j.chemosphere.2006.09.016 pmid:17095046
[1] Yilei Lu, Yunqing Huang, Siyu Zeng, Can Wang. Scenario-based assessment and multi-objective optimization of urban development plan with carrying capacity of water system[J]. Front. Environ. Sci. Eng., 2020, 14(2): 21-.
[2] Zunaira Asif, Zhi Chen. An integrated optimization and simulation approach for air pollution control under uncertainty in open-pit metal mine[J]. Front. Environ. Sci. Eng., 2019, 13(5): 74-.
[3] Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process[J]. Front. Environ. Sci. Eng., 2017, 11(6): 11-.
[4] Mingkai Zhang, He Jing, Yanchen Liu, Hanchang Shi. Estimation and optimization operation in dealing with inflow and infiltration of a hybrid sewerage system in limited infrastructure facility data[J]. Front. Environ. Sci. Eng., 2017, 11(2): 7-.
[5] Xuewei QI,Ke LI,Walter D. POTTER. Estimation of distribution algorithm enhanced particle swarm optimization for water distribution network optimization[J]. Front. Environ. Sci. Eng., 2016, 10(2): 341-351.
[6] Yue HUANG,Xin DONG,Siyu ZENG,Jining CHEN. An integrated model for structure optimization and technology screening of urban wastewater systems[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1036-1048.
[7] Yijing CHAN,Meifong CHONG,Chunglim LAW. Optimization of thermophilic anaerobic-aerobic treatment system for Palm Oil Mill Effluent (POME)[J]. Front. Environ. Sci. Eng., 2015, 9(2): 334-351.
[8] Junying CHU, Hao WANG, Can WANG. Exploring price effects on the residential water conservation technology diffusion process: a case study of Tianjin city[J]. Front Envir Sci Eng, 2013, 7(5): 688-698.
[9] Shuming LIU, Wenjun LIU, Jinduan CHEN, Qi WANG. Optimal locations of monitoring stations in water distribution systems under multiple demand patterns: a flaw of demand coverage method and modification[J]. Front Envir Sci Eng, 2012, 6(2): 204-212.
[10] Mow-Soung CHENG, Jenny X. ZHEN, Leslie SHOEMAKER, . BMP decision support system for evaluating stormwater management alternatives[J]. Front.Environ.Sci.Eng., 2009, 3(4): 453-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed