Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (6) : 806-814    https://doi.org/10.1007/s11783-012-0453-4
RESEARCH ARTICLE
Decolorization of azo dyes by a salt-tolerant Staphylococcus cohnii strain isolated from textile wastewater
Bin YAN1(), Cuihong DU2, Meilan XU1, Wenchao LIAO1
1. Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China; 2. School of Biotechnology Engineering, Jimei University, Xiamen 361021, China
 Download: PDF(286 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The salt-tolerant Staphylococcus cohnii strain, isolated from textile wastewater, has been found effective on decolorizing several kinds of azo dyes with different structures. The optimal conditions for azo dye acid red B (ARB) decolorization by S. cohnii were determined to be pH= 7.0 and 30°C. The decolorization efficiency increased with the increase of the salinity concentration, and around 90% of ARB (100 mg·L-1) could be decolorized in 24 h when the salinity concentration was up to 50 g·L-1. Moreover, the strain could still decolorize 19% of ARB in 24 h even when the NaCl concentration was increased to 150 g·L-1. Meanwhile, the dependence of the specific decolorization rate by S. cohnii on the ARB concentration could be described with Michaelis-Menten kinetics (Km = 585.7 mg·L-1, Vmax = 109.8 mg·g cell-1·h-1). The addition of quinone redox mediator, named 2-hydroxy-1,4-naphthoquinone and anthraquinone-2,6-disulfonate, significantly accelerated the decolorization performance of S. cohnii. Furtherly, the activities of azoreductase (0.55 μmol·mg protein-1·min-1) and Nicotineamide adenine dinucleotide-dichlorophenol indophenol (NADH-DCIP) reductase (8.9 μmol·mg protein-1·min-1) have been observed in the crude cell extracts of S. cohnii. The decolorization products of ARB were analyzed by HPLC-MS, and the results indicated the reductive pathway was responsible for azo dye decolorization by S. cohnii.

Keywords Staphylococcus cohnii      decolorization      salt      azoreductase      Nicotineamide adenine dinucleotide-dichlorophenol indophenol (NADH-DCIP) reductase     
Corresponding Author(s): YAN Bin,Email:yanb@xmut.edu.cn   
Issue Date: 01 December 2012
 Cite this article:   
Bin YAN,Cuihong DU,Meilan XU, et al. Decolorization of azo dyes by a salt-tolerant Staphylococcus cohnii strain isolated from textile wastewater[J]. Front Envir Sci Eng, 2012, 6(6): 806-814.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0453-4
https://academic.hep.com.cn/fese/EN/Y2012/V6/I6/806
Fig.1  Structures of azo dyes used in this study
Fig.2  Note: The numbers at the nodes indicate the bootstrap values. Bar (0.001), 1 nucleotide substitution per 1000 nucleotides of 16S rDNA sequence. Strain names are shown next to the organism names and GenBank accession numbers for the 16S rDNA sequences used are given in parentheses
he phylogenetic tree of 16S rDNA sequences showing the position of the strain AZR based on neighbor-joining (NJ) with 1000 bootstrap replication.
Fig.3  SEM images (a: 7.6 mm×3.50 k, b for 7.7 mm ×50.0 k) of the isolated strain
Fig.4  Decolorization of different azo dyes by
Fig.5  Effects of (a) pH value (pH 5.0-10.0), (b) temperature (24°C-37°C) and (c) salinity (0-200 g·L) on ARB decolorization by
Fig.6  Relationship between the specific decolorization rate of and ARB concentration
Fig.7  Effects of quinone redox mediators (lawsone and AQDS) on ARB decoloriz-ation by
parameters studiedT. aestivumP. vulgaris
controlbefore decolorizationafter decolorizationcontrolbefore decolorizationafter decolorization
germination /%1009698100100100
plumule/cm2.21±0.181.03±0.241.92±0.655.21±0.173.65±0.244.56±0.37
radicle/cm7.73±0.424.48±0.267.47±0.782.24±0.231.09±0.071.74±0.42
Tab.1  Effects of ARB solution on the growth of plants before and after decolorization
Fig.8  Pathway for the biodegradation of ARB (Note: MW means molecular weight)
1 Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology , 2001, 56(1-2): 69–80
doi: 10.1007/s002530100686 pmid:11499949
2 Wang X, Cheng X, Sun D, Qi H. Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. Journal of Environmental Sciences (China) , 2008, 20(10): 1218–1225
doi: 10.1016/S1001-0742(08)62212-3 pmid:19143346
3 Hu T L. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Science and Technology , 2001, 43(2): 261–269
pmid:11380189
4 O’Neill C, Lopez A, Esteves S, Hawkes F R, Hawkes D L, Wilcox S. Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Applied Microbiology and Biotechnology , 2000, 53(2): 249–254
doi: 10.1007/s002530050016 pmid:10709990
5 Ogugbue C J, Sawidis T, Oranusi N A. Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system. Ecological Engineering , 2010, 37(12): 2056–2060
doi: 10.1016/j.ecoleng.2011.09.003
6 EPA. Profile of the textile industry. Environmental Protection Agency, Washington, DC . 1997
7 Dubrow S F, Boardman G D, Michelsen D L. Chemical pretreatment and aerobic–anaerobic degradation of textile dye wastewater. In: Reife A, Freeman H S, eds. Environmental Chemistry of Dyes and Pigments . New York: Wiley, 1996, 75–102
8 dos Santos A B, Cervantes F J, van Lier J B. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology , 2007, 98(12): 2369–2385
doi: 10.1016/j.biortech.2006.11.013 pmid:17204423
9 Jothimani P, Kalaichelvan G, Bhaskaran A, Selvaseelan D A, Ramasamy K. Anaerobic biodegradation of aromatic compounds. Indian Journal of Experimental Biology , 2003, 41(9): 1046–1067
pmid:15242297
10 Carmona M, Zamarro M T, Blázquez B, Durante-Rodríguez G, Juárez J F, Valderrama J A, Barragán M J, García J L, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiology and Molecular Biology Reviews , 2009, 73(1): 71–133
doi: 10.1128/MMBR.00021-08 pmid:19258534
11 Liu G, Zhou J, Wang J, Wang X, Jin R, Lv H. Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Applied Microbiology and Biotechnology , 2011, 91(2): 417–424
doi: 10.1007/s00253-011-3273-8 pmid:21509566
12 van der Zee F P, Cervantes F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnology Advances , 2009, 27(3): 256–277
doi: 10.1016/j.biotechadv.2009.01.004 pmid:19500549
13 Saratale R G, Saratale G D, Chang J S, Govindwar S P. Bacterial decolorization and degradation of azo dyes: a review. Journal of Taiwan Institute of Chemical Engineers , 2011, 42(1): 138–157
doi: 10.1016/j.jtice.2010.06.006
14 Harris L G, Foster S J, Richards R G. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. European Cells & Materials , 2002, 4: 39–60
pmid:14562246
15 B?rjesson S, Matussek A, Melin S, L?fgren S, Lindgren P E. Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: an uncharted threat? Journal of Applied Microbiology , 2010, 108(4): 1244–1251
doi: 10.1111/j.1365-2672.2009.04515.x pmid:19735317
16 Faria C, Vaz-Moreira I, Serapicos E, Nunes O C, Manaia C M. Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water. Science of the Total Environment , 2009, 407(12): 3876–3882
doi: 10.1016/j.scitotenv.2009.02.034 pmid:19324394
17 Mallick S, Dutta T K. Kinetics of phenanthrene degradation by Staphylococcus sp. strain PN/Y involving 2-hydroxy-1-naphthoic acid in a novel metabolic pathway. Process Biochemistry , 2008, 43(9): 1004–1008
doi: 10.1016/j.procbio.2008.04.022
18 Mallick S, Chatterjee S, Dutta T K. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology , 2007, 153(Pt 7): 2104–2115
doi: 10.1099/mic.0.2006/004218-0 pmid:17600055
19 Monna L, Omori T, Kodama T. Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Applied and Environmental Microbiology , 1993, 59(1): 285–289
pmid:8439154
20 Chen H, Hopper S L, Cerniglia C E. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology , 2005, 151(Pt 5): 1433–1441
doi: 10.1099/mic.0.27805-0 pmid:15870453
21 Elisangela F, Andrea Z, Fabio D G, Cristiano R M, Regina D L, Artur C P. Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. International Biodeterioration and Biodegradation , 2009, 63(3): 280–288
doi: 10.1016/j.ibiod.2008.10.003
22 Ayed L, Chaieb K, Cheref A, Bakhrouf A. Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination , 2010, 260(1–3): 137–146
doi: 10.1016/j.desal.2010.04.052
23 Uddin M S, Zhou J, Qu Y, Guo J, Wang P, Zhao L. Biodecolorization of azo dye acid red B under high salinity condition. Bulletin of Environmental Contamination and Toxicology , 2007, 79(4): 440–444
doi: 10.1007/s00128-007-9260-1 pmid:17721733
24 Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research , 1997, 25(24): 4876–4882
doi: 10.1093/nar/25.24.4876 pmid:9396791
25 Salokhe M D, Govindwar S P. Effect of carbon source on the biotransformation enzymes in Serratia marcescens. World Journal of Microbiology and Biotechnology , 1999, 15(2): 229–232
doi: 10.1023/A:1008875404889
26 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 1976, 72(1-2): 248–254
doi: 10.1016/0003-2697(76)90527-3 pmid:942051
27 Liu G, Wang J, Lu H, Jin R, Zhou J, Zhang L. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes. Journal of Hazardous Materials , 2009, 171(1-3): 222–229
doi: 10.1016/j.jhazmat.2009.05.136 pmid:19545943
28 Wang X, Cheng X, Sun D. Autocatalysis in reactive black 5 biodecolorization by Rhodopseudomonas palustris W1. Applied Microbiology and Biotechnology , 2008, 80(5): 907–915
doi: 10.1007/s00253-008-1657-1 pmid:18762937
29 Kostick D S. The material flow concept for materials. Natural Resources Research , 1996, 5(4): 211–233
doi: 10.1007/BF02257436
30 Khalid A, Arshad M, Crowley D E. Decolorization of azo dyes by Shewanella sp. under saline conditions. Applied Microbiology and Biotechnology , 2008, 79(6): 1053–1059
doi: 10.1007/s00253-008-1498-y pmid:18461315
31 Amoozegar M A, Hajighasemi M, Hamedi J, Asad S, Ventosa A. Azo dye decolorization by halophilic and halotolerant microorganisms. Annals of Microbiology , 2010, 61(2): 217–230
doi: 10.1007/s13213-010-0144-y
32 Asad S, Amoozegar M A, Pourbabaee A A, Sarbolouki M N, Dastgheib S M M. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology , 2007, 98(11): 2082–2088
doi: 10.1016/j.biortech.2006.08.020 pmid:17055263
33 Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin M S. A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation , 2008, 19(1): 15–19
doi: 10.1007/s10532-007-9110-1 pmid:17347922
34 Dawkar V V, Jadhav U U, Ghodake G S, Govindwar S P. Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation , 2009, 20(6): 777–787
doi: 10.1007/s10532-009-9266-y pmid:19468842
35 Gomare S S, Govindwar S P. Brevibacillus laterosporus MTCC 2298: a potential azo dye degrader. Journal of Applied Microbiology , 2009, 106(3): 993–1004
doi: 10.1111/j.1365-2672.2008.04066.x pmid:19187152
36 Yang Y Y, Du L N, Wang G, Jia X M, Zhao Y H. The decolorisation capacity and mechanism of Shewanella oneidensis MR-1 for methyl orange and acid yellow 199 under microaerophilic conditions. Water Science and Technology , 2011, 63(5): 956–963
doi: 10.2166/wst.2011.275 pmid:21411946
37 Saratale R G, Saratale G D, Chang J S, Govindwar S P. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation , 2010, 21(6): 999–1015
doi: 10.1007/s10532-010-9360-1 pmid:20407917
39 Saratale R G, Saratale G D, Chang J S, Govindwar S P. Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers , 2011, 42(1): 138–157
[1] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
[2] Wenchao Xue, May Zaw, Xiaochan An, Yunxia Hu, Allan Sriratana Tabucanon. Sea salt bittern-driven forward osmosis for nutrient recovery from black water: A dual waste-to-resource innovation via the osmotic membrane process[J]. Front. Environ. Sci. Eng., 2020, 14(2): 32-.
[3] Nan ZHAO,Qingzhu ZHANG,Wenxing WANG. Heterogeneous reaction mechanism of gaseous HNO3 with solid NaCl: a density functional theory study[J]. Front. Environ. Sci. Eng., 2016, 10(5): 3-.
[4] Zhouyuan LI,Yingmei LIANG,Junhui ZHOU,Xiao SUN. Impacts of de-icing salt pollution on urban road greenspace: a case study of Beijing[J]. Front.Environ.Sci.Eng., 2014, 8(5): 747-756.
[5] Tao PAN, Suizhou REN, Jun GUO, Meiying XU, Guoping SUN. Biosorption and biotransformation of crystal violet by Aeromonas hydrophila DN322p[J]. Front Envir Sci Eng, 2013, 7(2): 185-190.
[6] ZHANG Liquan, GAO Zhanguo, Armitage Richard, Kent Martin. Spectral characteristics of plant communities from salt marshes: A case study from Chongming Dongtan, Yangtze estuary, China[J]. Front.Environ.Sci.Eng., 2008, 2(2): 187-197.
[7] CHEN Xiaomin, SHEN Qirong, XU Yangchun. Hydraulic properties of typical salt-affected soils in Jiangsu Province, China[J]. Front.Environ.Sci.Eng., 2007, 1(4): 443-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed